Severe acute respiratory syndrome coronavirus-2 accessory proteins ORF3a and ORF7a modulate autophagic flux and Ca

Ca2+ homeostasis ORF3a ORF7a SARS-CoV-2 Saccharomyces cerevisiae autophagy

Journal

Frontiers in microbiology
ISSN: 1664-302X
Titre abrégé: Front Microbiol
Pays: Switzerland
ID NLM: 101548977

Informations de publication

Date de publication:
2023
Historique:
received: 27 01 2023
accepted: 21 03 2023
medline: 20 4 2023
pubmed: 20 4 2023
entrez: 20 04 2023
Statut: epublish

Résumé

Virus infection involves the manipulation of key host cell functions by specialized virulence proteins. The Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) small accessory proteins ORF3a and ORF7a have been implicated in favoring virus replication and spreading by inhibiting the autophagic flux within the host cell. Here, we apply yeast models to gain insights into the physiological functions of both SARS-CoV-2 small open reading frames (ORFs). ORF3a and ORF7a can be stably overexpressed in yeast cells, producing a decrease in cellular fitness. Both proteins show a distinguishable intracellular localization. ORF3a localizes to the vacuolar membrane, whereas ORF7a targets the endoplasmic reticulum. Overexpression of ORF3a and ORF7a leads to the accumulation of Atg8 specific autophagosomes. However, the underlying mechanism is different for each viral protein as assessed by the quantification of the autophagic degradation of Atg8-GFP fusion proteins, which is inhibited by ORF3a and stimulated by ORF7a. Overexpression of both SARS-CoV-2 ORFs decreases cellular fitness upon starvation conditions, where autophagic processes become essential. These data confirm previous findings on SARS-CoV-2 ORF3a and ORF7a manipulating autophagic flux in mammalian cell models and are in agreement with a model where both small ORFs have synergistic functions in stimulating intracellular autophagosome accumulation, ORF3a by inhibiting autophagosome processing at the vacuole and ORF7a by promoting autophagosome formation at the ER. ORF3a has an additional function in Ca

Identifiants

pubmed: 37077240
doi: 10.3389/fmicb.2023.1152249
pmc: PMC10106705
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1152249

Informations de copyright

Copyright © 2023 Garrido-Huarte, Fita-Torró, Viana, Pascual-Ahuir and Proft.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Dev Cell. 2021 Dec 6;56(23):3250-3263.e5
pubmed: 34706264
Cell Host Microbe. 2019 Oct 9;26(4):453-462
pubmed: 31600499
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3405-13
pubmed: 23184977
Curr Opin Cell Biol. 2020 Aug;65:50-57
pubmed: 32203894
Int J Exp Pathol. 2001 Feb;82(1):3-13
pubmed: 11422537
J Biol Chem. 2017 Dec 1;292(48):19905-19918
pubmed: 29042435
Cell Microbiol. 2013 Mar;15(3):368-76
pubmed: 23051682
Microbes Infect. 2012 Feb;14(2):126-39
pubmed: 22051604
Autophagy. 2023 Feb;19(2):551-569
pubmed: 35670302
Front Immunol. 2020 Oct 06;11:578038
pubmed: 33123162
Nat Protoc. 2007;2(1):31-4
pubmed: 17401334
Cell. 2020 Dec 10;183(6):1520-1535.e14
pubmed: 33157038
Antiviral Res. 2014 Sep;109:97-109
pubmed: 24995382
Genes Dev. 1997 Dec 15;11(24):3432-44
pubmed: 9407035
Autophagy. 2021 Sep;17(9):2659-2661
pubmed: 34281462
Int J Mol Sci. 2022 Sep 20;23(19):
pubmed: 36232320
J Virol. 1996 Sep;70(9):5821-6
pubmed: 8709199
Curr Opin Physiol. 2022 Oct;29:100596
pubmed: 36187896
Yeast. 2012 Jun;29(6):219-31
pubmed: 22674776
Signal Transduct Target Ther. 2020 Nov 17;5(1):269
pubmed: 33203855
Cell Discov. 2021 May 4;7(1):31
pubmed: 33947832
Adv Exp Med Biol. 2019;1209:55-78
pubmed: 31728865
Cell. 2008 Jan 11;132(1):27-42
pubmed: 18191218
Virology. 2022 May;570:123-133
pubmed: 35398776
Emerg Microbes Infect. 2021 Dec;10(1):196-205
pubmed: 33399028
Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2770-4
pubmed: 7708721
Traffic. 2013 Apr;14(4):365-81
pubmed: 23324027
Virus Res. 2014 Oct 13;191:83-91
pubmed: 25091564
Methods Enzymol. 2017;588:307-321
pubmed: 28237107
J Gen Virol. 2002 Jul;83(Pt 7):1547-1564
pubmed: 12075073
Autophagy. 2013 May;9(5):797-8
pubmed: 23442576
Nat Rev Microbiol. 2012 Jul 02;10(8):563-74
pubmed: 22751485
Front Cell Dev Biol. 2021 Jul 27;9:716208
pubmed: 34386498
Antioxidants (Basel). 2022 Feb 02;11(2):
pubmed: 35204187
J Exp Biol. 1994 Nov;196:157-66
pubmed: 7823019
Trends Microbiol. 2020 Dec;28(12):1022-1033
pubmed: 32536523
Nat Rev Immunol. 2013 Oct;13(10):722-37
pubmed: 24064518
Cell Host Microbe. 2010 Jun 25;7(6):500-8
pubmed: 20542253
Nat Struct Mol Biol. 2021 Jul;28(7):573-582
pubmed: 34158638
Cell Biosci. 2021 Mar 25;11(1):58
pubmed: 33766124
Yeast. 2007 Oct;24(10):913-9
pubmed: 17583893
Autophagy. 2020 Dec;16(12):2131-2139
pubmed: 32964796
Cell Calcium. 2016 Aug;60(2):74-87
pubmed: 27157108
Lancet. 2020 Feb 15;395(10223):497-506
pubmed: 31986264
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):E376-E385
pubmed: 28049830
Rev Med Virol. 2018 Jul;28(4):e1973
pubmed: 29709097
Cell Rep. 2021 May 18;35(7):109126
pubmed: 33974846
JAMA. 2020 May 12;323(18):1824-1836
pubmed: 32282022
Biomed Pharmacother. 2022 Dec;156:113889
pubmed: 36265309
Cells. 2021 Aug 07;10(8):
pubmed: 34440791
Cell Mol Immunol. 2020 Aug;17(8):881-883
pubmed: 32555321
Dev Cell. 2021 Feb 22;56(4):427-442.e5
pubmed: 33422265
Eukaryot Cell. 2014 Jun;13(6):694-705
pubmed: 24681686
Cell. 2020 Apr 16;181(2):223-227
pubmed: 32220310
Oncogene. 1999 Jul 8;18(27):4015-21
pubmed: 10435625
Viruses. 2012 Nov 07;4(11):2902-23
pubmed: 23202509
Microb Cell. 2017 Sep 18;4(10):311-330
pubmed: 29082230
Nature. 2020 Jul;583(7816):459-468
pubmed: 32353859
J Virol. 2004 Jul;78(14):7311-8
pubmed: 15220404
Nat Rev Mol Cell Biol. 2020 Aug;21(8):439-458
pubmed: 32372019
J Cell Biol. 2022 Jun 6;221(6):
pubmed: 35446347
Yeast. 2000 Jun 30;16(9):857-60
pubmed: 10861908
J Cell Sci. 2013 Mar 15;126(Pt 6):1307-16
pubmed: 23645161
Nature. 2020 Mar;579(7798):265-269
pubmed: 32015508

Auteurs

José Luis Garrido-Huarte (JL)

Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain.

Josep Fita-Torró (J)

Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain.

Rosa Viana (R)

Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain.

Amparo Pascual-Ahuir (A)

Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València UPV, Valencia, Spain.

Markus Proft (M)

Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain.

Classifications MeSH