SARS-CoV-2 evolved variants optimize binding to cellular glycocalyx.

ACE2 Brownian dynamics COVID-19 SARS-CoV-2 biomimetic biosensor electrostatic potential heparan sulfate heparin lateral-flow assay spike

Journal

Cell reports. Physical science
ISSN: 2666-3864
Titre abrégé: Cell Rep Phys Sci
Pays: United States
ID NLM: 101769239

Informations de publication

Date de publication:
19 Apr 2023
Historique:
received: 08 11 2022
revised: 07 02 2023
accepted: 07 03 2023
medline: 20 4 2023
pubmed: 20 4 2023
entrez: 20 04 2023
Statut: ppublish

Résumé

Viral variants of concern continue to arise for SARS-CoV-2, potentially impacting both methods for detection and mechanisms of action. Here, we investigate the effect of an evolving spike positive charge in SARS-CoV-2 variants and subsequent interactions with heparan sulfate and the angiotensin converting enzyme 2 (ACE2) in the glycocalyx. We show that the positively charged Omicron variant evolved enhanced binding rates to the negatively charged glycocalyx. Moreover, we discover that while the Omicron spike-ACE2 affinity is comparable to that of the Delta variant, the Omicron spike interactions with heparan sulfate are significantly enhanced, giving rise to a ternary complex of spike-heparan sulfate-ACE2 with a large proportion of double-bound and triple-bound ACE2. Our findings suggest that SARS-CoV-2 variants evolve to be more dependent on heparan sulfate in viral attachment and infection. This discovery enables us to engineer a second-generation lateral-flow test strip that harnesses both heparin and ACE2 to reliably detect all variants of concern, including Omicron.

Identifiants

pubmed: 37077408
doi: 10.1016/j.xcrp.2023.101346
pii: S2666-3864(23)00111-X
pmc: PMC10080732
doi:

Types de publication

Journal Article

Langues

eng

Pagination

101346

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM132826
Pays : United States
Organisme : NIBIB NIH HHS
ID : T32 EB009380
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI171954
Pays : United States

Informations de copyright

© 2023 The Author(s).

Déclaration de conflit d'intérêts

The authors declare the following patent: Glycosaminoglycan articles and methods relating thereof. Inventors: S.H.K, R.F. Application number PCT/US22/79641 was submitted on this work.

Références

Cell. 2022 Jul 7;185(14):2422-2433.e13
pubmed: 35772405
Microbiol Res. 2022 Sep;262:127099
pubmed: 35779308
J Biol Chem. 2022 Feb;298(2):101507
pubmed: 34929169
J Comput Chem. 2010 Jan 30;31(2):455-61
pubmed: 19499576
Science. 2020 Mar 27;367(6485):1444-1448
pubmed: 32132184
Nature. 2020 May;581(7807):215-220
pubmed: 32225176
Nat Struct Mol Biol. 2021 Feb;28(2):202-209
pubmed: 33432247
Science. 2020 Mar 13;367(6483):1260-1263
pubmed: 32075877
PLoS Pathog. 2021 Jan 21;17(1):e1009233
pubmed: 33476327
Curr Biol. 2021 Jul 26;31(14):R918-R929
pubmed: 34314723
Cell Discov. 2020 Nov 4;6(1):80
pubmed: 33298900
Signal Transduct Target Ther. 2022 Apr 7;7(1):118
pubmed: 35393393
Chembiochem. 2022 May 4;23(9):e202200059
pubmed: 35322516
J Microbiol Immunol Infect. 2022 Jun;55(3):387-394
pubmed: 35501267
J Chem Inf Model. 2022 Feb 14;62(3):656-667
pubmed: 35060381
Chembiochem. 2022 Mar 18;23(6):e202100681
pubmed: 35020256
Nat Med. 2022 Jul;28(7):1357-1358
pubmed: 35804153
iScience. 2023 Mar 17;26(3):106230
pubmed: 36845032
J Virol. 2022 Apr 27;96(8):e0012822
pubmed: 35343766
Chem Biol Drug Des. 2006 Jan;67(1):83-4
pubmed: 16492153
Nat Rev Microbiol. 2021 Jul;19(7):409-424
pubmed: 34075212
Front Mol Biosci. 2021 Aug 30;8:725528
pubmed: 34527703
J Virol. 2021 Jan 13;95(3):
pubmed: 33173010
J Med Virol. 2022 Apr;94(4):1277-1280
pubmed: 34914120
PLoS Pathog. 2021 Jan 25;17(1):e1009246
pubmed: 33493182
Biophys J. 2021 Mar 16;120(6):1072-1084
pubmed: 33189680
Front Immunol. 2013 Nov 20;4:385
pubmed: 24312095
J Virol. 2018 Jan 17;92(3):
pubmed: 29142129
Nat Rev Microbiol. 2014 Nov;12(11):739-49
pubmed: 25263223
J Comput Chem. 2009 Dec;30(16):2785-91
pubmed: 19399780
PLoS One. 2011;6(8):e23710
pubmed: 21887302
Cell. 2020 Apr 16;181(2):281-292.e6
pubmed: 32155444
Nature. 2022 Feb;602(7898):671-675
pubmed: 35016199
Nature. 2022 Mar;603(7902):706-714
pubmed: 35104837
J Med Chem. 2006 Jan 26;49(2):534-53
pubmed: 16420040
Cell. 2022 Feb 17;185(4):630-640.e10
pubmed: 35093192
J Comput Chem. 2023 Feb 5;44(4):594-601
pubmed: 36398990
Cell. 2020 Nov 12;183(4):1043-1057.e15
pubmed: 32970989
Proc Natl Acad Sci U S A. 2021 Nov 2;118(44):
pubmed: 34716263
J Am Chem Soc. 2021 Aug 25;143(33):13205-13211
pubmed: 34375093
Sci Rep. 2022 May 20;12(1):8540
pubmed: 35595778
Sci Immunol. 2022 Sep 16;7(75):eabq2427
pubmed: 35653438
Nat Microbiol. 2022 Aug;7(8):1161-1179
pubmed: 35798890
Science. 2021 Dec 24;374(6575):1621-1626
pubmed: 34751595
Trends Chem. 2019 Nov;1(8):727-738
pubmed: 32309795
ACS Cent Sci. 2022 Jan 26;8(1):22-42
pubmed: 35106370
Microbiol Spectr. 2022 Aug 31;10(4):e0200622
pubmed: 35943268
Science. 2022 Feb 18;375(6582):760-764
pubmed: 35050643
Curr Opin Struct Biol. 2022 Oct;76:102439
pubmed: 35926454
Thromb Haemost. 2020 Dec;120(12):1700-1715
pubmed: 33368089
Cell. 2021 Apr 29;184(9):2348-2361.e6
pubmed: 33730597
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734
pubmed: 32376634
Signal Transduct Target Ther. 2021 Jan 29;6(1):39
pubmed: 33514685
J Biochem. 2022 Sep 30;172(4):205-216
pubmed: 35792074
Nat Med. 2022 Mar;28(3):490-495
pubmed: 35046573
Comput Struct Biotechnol J. 2021;19:2806-2818
pubmed: 33968333
Bioorg Med Chem. 2006 May 1;14(9):3160-73
pubmed: 16413785
Sci Transl Med. 2022 Feb 23;14(633):eabk3445
pubmed: 35014856
Comput Struct Biotechnol J. 2022;20:1168-1176
pubmed: 35251533
Rev Med Virol. 2022 Sep;32(5):e2381
pubmed: 35856385
Science. 2020 Jul 17;369(6501):330-333
pubmed: 32366695
Nat Rev Mol Cell Biol. 2022 Jan;23(1):3-20
pubmed: 34611326
ACS Cent Sci. 2020 Oct 28;6(10):1722-1734
pubmed: 33140034
Cell Host Microbe. 2020 Oct 7;28(4):586-601.e6
pubmed: 32841605
Viruses. 2019 Jul 01;11(7):
pubmed: 31266258
ACS Cent Sci. 2021 Jun 23;7(6):1009-1018
pubmed: 34235261
Nat Chem. 2021 Oct;13(10):963-968
pubmed: 34413500
Front Mol Biosci. 2021 Jun 11;8:649575
pubmed: 34179075
Antiviral Res. 2020 Sep;181:104873
pubmed: 32653452
Comput Phys Commun. 2010 Nov 1;181(11):1896-1905
pubmed: 21132109
J Chem Theory Comput. 2011 Feb 8;7(2):525-37
pubmed: 26596171
Eur J Intern Med. 2020 Jun;76:14-20
pubmed: 32336612
Nat Commun. 2021 Feb 8;12(1):848
pubmed: 33558493
Life Sci Alliance. 2020 Jul 23;3(9):
pubmed: 32703818
Annu Rev Biochem. 2014;83:129-57
pubmed: 24606135

Auteurs

Sang Hoon Kim (SH)

Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA.

Fiona L Kearns (FL)

Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA.

Mia A Rosenfeld (MA)

Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA.

Lane Votapka (L)

Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA.

Lorenzo Casalino (L)

Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA.

Micah Papanikolas (M)

Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA.

Rommie E Amaro (RE)

Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA.

Ronit Freeman (R)

Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA.

Classifications MeSH