The Readiness of Water Molecules to Split into Hydrogen + Oxygen: A Proposed New Aspect of Water Splitting.
electrocatalysis
heterogeneous catalysis
renewable energy
water electrolysis
Journal
Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
revised:
17
04
2023
received:
04
01
2023
medline:
20
4
2023
pubmed:
20
4
2023
entrez:
20
04
2023
Statut:
ppublish
Résumé
The potential of the anode, at which the evolution of oxygen begins, is a key parameter that describes how well water is split in water electrolyzers. Research efforts related to electrocatalytically initiated water splitting that aim at reducing the oxygen evolution reaction (OER) overpotential to date focus on the optimization of materials used to produce the electrodes. Descriptors for the readiness of the H
Identifiants
pubmed: 37078987
doi: 10.1002/adma.202300099
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2300099Informations de copyright
© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Références
M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. Shao-Horn, H. Schäfer, Chem. Soc. Rev. 2022, 51, 4583.
C. Wei, Z. Feng, G. G. Scherer, J. Barber, Y. Shao-Horn, Z. J. Xu, Adv. Mater. 2017, 29, 1606800.
H. Schäfer, M. Chatenet, ACS Energy Lett. 2018, 3, 574.
L. Trotochaud, S. L. Young, J. K. Ranney, S. W. Boettcher, J. Am. Chem. Soc. 2014, 136, 6744.
H. J. Bakker, J. L. Skinner, Chem. Rev. 2010, 110, 1498.
K. J. Tielrooij, N. Garcia-Araez, M. Bonn, H. J. Bakker, Science 2010, 328, 1006.
P. Ball, Life's Matrix: A Biography of Water, University of California Press, Berkeley, CA, USA 2001.
D. S. Eisenberg, W. Kauzmann, The Structure and Properties of Water, Oxford University Press, New York 1969.
Y. R. Shen, V. Ostroverkhov, Chem. Rev. 2006, 106, 1140.
V. A. Sirotkin, B. N. Solomonov, D. A. Faizullin, V. D. Fedotov, J. Struct. Chem. 2000, 41, 997.
T. Seki, K.-Y. Chiang, C.-C. Yu, X. Yu, M. Okuno, J. Hunger, Y. Nagata, M. Bonn, J. Phys. Chem. Lett. 2020, 11, 8459.
R. Rey, K. B. Møller, J. T. Hynes, J. Phys. Chem. A 2002, 106, 11993.
D. Ojha, K. Karhan, T. D. Kühne, Sci. Rep. 2018, 8, 16888.
Taken from personal correspondence with Professor Mischa Bonn, Max Planck Institute for Polymer Research, Department of Molecular Spectroscopy, Ackermannweg 10 55128 Mainz, Germany; January 03, 2023 11:42 CET.
A. Bieberle-Hütter, A. C. Bronneberg, K. George, M. C. M. van den Sanden, J. Phys. D: Appl. Phys. 2021, 54, 133001.
Y. A. Efimov, Y. A. Naberukhin, Mol. Phys. 1975, 30, 1621.
G. C. Pimentel, A. L. McClellan, The Hydrogen Bond, (Ed.:L. Pauling), Freeman, San Francisco , CA, USA 1960, p. 200.
F. Perakis, L. De Marco, A. Shalit, F. Tang, Z. R. Kann, T. D. Kühne, R. Torre, M. Bonn, Y. Nagata, Chem. Rev. 2016, 116, 7590.
D. N. Glew, H. D. Mak, N. S. Rath, in Hydrogen Bonded Solvent Systems, (Ed.:A. K. Covington, P. Jones), Taylor and Francis, London, UK, 1968.
H. Schäfer, D. M. Chevrier, K. Kuepper, P. Zhang, J. Wollschlaeger, D. Daum, M. Steinhart, C. Heß, U. Krupp, K. Müller-Buschbaum, J. Stangl, M. Schmidt, Energy Environ. Sci. 2016, 9, 2609.