Slow integrin-dependent migration organizes networks of tissue-resident mast cells.
Journal
Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
received:
05
08
2022
accepted:
15
03
2023
medline:
2
6
2023
pubmed:
21
4
2023
entrez:
20
04
2023
Statut:
ppublish
Résumé
Immune cell locomotion is associated with amoeboid migration, a flexible mode of movement, which depends on rapid cycles of actin polymerization and actomyosin contraction
Identifiants
pubmed: 37081147
doi: 10.1038/s41590-023-01493-2
pii: 10.1038/s41590-023-01493-2
pmc: PMC10232366
doi:
Substances chimiques
Integrins
0
Actins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
915-924Subventions
Organisme : Medical Research Council
ID : MC_UU_00016/7
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00029/9
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023. The Author(s).
Références
Lämmermann, T. & Sixt, M. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 21, 636–644 (2009).
pubmed: 19523798
doi: 10.1016/j.ceb.2009.05.003
Lämmermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).
pubmed: 18451854
doi: 10.1038/nature06887
Lämmermann, T. & Germain, R. N. The multiple faces of leukocyte interstitial migration. Semin. Immunopathol. 36, 227–251 (2014).
pubmed: 24573488
pmcid: 4118216
doi: 10.1007/s00281-014-0418-8
Reversat, A. et al. Cellular locomotion using environmental topography. Nature 582, 582–585 (2020).
pubmed: 32581372
doi: 10.1038/s41586-020-2283-z
Rottner, K. & Stradal, T. E. B. WASP stings into matrix to lead immune cell migration. J. Cell Biol. 221, e202112087 (2022).
pubmed: 35061007
pmcid: 8789199
doi: 10.1083/jcb.202112087
Yamada, K. M. & Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20, 738–752 (2019).
pubmed: 31582855
doi: 10.1038/s41580-019-0172-9
Krystel-Whittemore, M., Dileepan, K. N. & Wood, J. G. Mast cell: a multi-functional master cell. Front. Immunol. 6, 620 (2015).
pubmed: 26779180
Mukai, K., Tsai, M., Starkl, P., Marichal, T. & Galli, S. J. IgE and mast cells in host defense against parasites and venoms. Semin. Immunopathol. 38, 581–603 (2016).
pubmed: 27225312
pmcid: 5010491
doi: 10.1007/s00281-016-0565-1
St. John, A. L., Rathore, A. P. S. & Ginhoux, F. New perspectives on the origins and heterogeneity of mast cells. Nat. Rev. Immunol. 23, 55–68 (2022).
doi: 10.1038/s41577-022-00731-2
Tsai, M., Valent, P. & Galli, S. J. KIT as a master regulator of the mast cell lineage. J. Allergy Clin. Immunol. 149, 1845–1854 (2022).
Pastwinska, J., Zelechowska, P., Walczak-Drzewiecka, A., Brzezinska-Blaszczyk, E. & Dastych, J. The art of mast cell adhesion. Cells 9, 2664 (2020).
pubmed: 33322506
pmcid: 7764012
doi: 10.3390/cells9122664
Tikoo, S. et al. Imaging of mast cells. Immunol. Rev. 282, 58–72 (2018).
pubmed: 29431206
doi: 10.1111/imr.12631
Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell–matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).
pubmed: 11721053
doi: 10.1126/science.1064829
Dastych, J. & Metcalfe, D. D. Stem cell factor induces mast cell adhesion to fibronectin. J. Immunol. 152, 213–219 (1994).
pubmed: 7504710
doi: 10.4049/jimmunol.152.1.213
Lam, V. et al. IgE alone stimulates mast cell adhesion to fibronectin via pathways similar to those used by IgE + antigen but distinct from those used by Steel factor. Blood 102, 1405–1413 (2003).
pubmed: 12702510
doi: 10.1182/blood-2002-10-3176
Calderwood, D. A. & Ginsberg, M. H. Talin forges the links between integrins and actin. Nat. Cell Biol. 5, 694–697 (2003).
pubmed: 12894175
doi: 10.1038/ncb0803-694
Liu, Y. J. et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672 (2015).
pubmed: 25679760
doi: 10.1016/j.cell.2015.01.007
Renkawitz, J. et al. Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 11, 1438–1443 (2009).
pubmed: 19915557
doi: 10.1038/ncb1992
Dudeck, A. et al. Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity 34, 973–984 (2011).
pubmed: 21703544
doi: 10.1016/j.immuni.2011.03.028
Roediger, B. et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat. Immunol. 14, 564–573 (2013).
pubmed: 23603794
pmcid: 4282745
doi: 10.1038/ni.2584
Ghigo, C. et al. Multicolor fate mapping of Langerhans cell homeostasis. J. Exp. Med 210, 1657–1664 (2013).
pubmed: 23940255
pmcid: 3754858
doi: 10.1084/jem.20130403
Columbo, M., Bochner, B. S. & Marone, G. Human skin mast cells express functional β
pubmed: 7538541
doi: 10.4049/jimmunol.154.11.6058
Herman, J. S., Sagar & Grün, D. FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data. Nat. Methods 15, 379–386 (2018).
pubmed: 29630061
doi: 10.1038/nmeth.4662
Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).
pubmed: 21839917
doi: 10.1016/j.devcel.2011.07.001
Morii, E. et al. Regulation of mouse mast cell protease 6 gene expression by transcription factor encoded by the mi locus. Blood 88, 2488–2494 (1996).
pubmed: 8839840
doi: 10.1182/blood.V88.7.2488.bloodjournal8872488
Oppezzo, A. & Rosselli, F. The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis. Cell Biosci. 11, 18 (2021).
pubmed: 33441180
pmcid: 7805242
doi: 10.1186/s13578-021-00529-0
Lämmermann, T. & Kastenmüller, W. Concepts of GPCR-controlled navigation in the immune system. Immunol. Rev. 289, 205–231 (2019).
pubmed: 30977203
pmcid: 6487968
doi: 10.1111/imr.12752
Carlson, T. R., Hu, H., Braren, R., Kim, Y. H. & Wang, R. A. Cell-autonomous requirement for β
pubmed: 18480158
doi: 10.1242/dev.016378
Zhang, Z., Vuori, K., Reed, J. C. & Ruoslahti, E. The α
pubmed: 7541142
pmcid: 41662
doi: 10.1073/pnas.92.13.6161
Metcalfe, D. D. Interaction of mast cells with extracellular matrix proteins. Int. Arch. Allergy Immunol. 107, 60–62 (1995).
pubmed: 7542103
doi: 10.1159/000236931
Scholten, J. et al. Mast cell-specific Cre/loxP-mediated recombination in vivo. Transgenic Res. 17, 307–315 (2008).
pubmed: 17972156
doi: 10.1007/s11248-007-9153-4
Petrich, B. G. et al. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J. Exp. Med 204, 3103–3111 (2007).
pubmed: 18086863
pmcid: 2150986
doi: 10.1084/jem.20071800
Potocnik, A. J., Brakebusch, C. & Fassler, R. Fetal and adult hematopoietic stem cells require β1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12, 653–663 (2000).
pubmed: 10894165
doi: 10.1016/S1074-7613(00)80216-2
Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).
pubmed: 11299042
pmcid: 31338
doi: 10.1186/1471-213X-1-4
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
pubmed: 20023653
doi: 10.1038/nn.2467
Buono, M. et al. A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors. Nat. Cell Biol. 18, 157–167 (2016).
pubmed: 26780297
pmcid: 4972409
doi: 10.1038/ncb3299
Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).
pubmed: 22281595
pmcid: 3270376
doi: 10.1038/nature10783
Hughes, E. D. et al. Genetic variation in C57BL/6 ES cell lines and genetic instability in the Bruce4 C57BL/6 ES cell line. Mamm. Genome 18, 549–558 (2007).
pubmed: 17828574
doi: 10.1007/s00335-007-9054-0
Townsend, D., Witkop, C. J. Jr. & Mattson, J. Tyrosinase subcellular distribution and kinetic parameters in wild type and C-locus mutant C57BL/6J mice. J. Exp. Zool. 216, 113–119 (1981).
pubmed: 6793688
doi: 10.1002/jez.1402160112
Xin, H. B., Deng, K. Y., Rishniw, M., Ji, G. & Kotlikoff, M. I. Smooth muscle expression of Cre recombinase and eGFP in transgenic mice. Physiol. Genomics 10, 211–215 (2002).
pubmed: 12209023
doi: 10.1152/physiolgenomics.00054.2002
Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V
pubmed: 1547487
doi: 10.1016/0092-8674(92)90029-C
Riedl, J. et al. Lifeact mice for studying F-actin dynamics. Nat. Methods 7, 168–169 (2010).
pubmed: 20195247
doi: 10.1038/nmeth0310-168
Scharffetter-Kochanek, K. et al. Spontaneous skin ulceration and defective T cell function in CD18 null mice. J. Exp. Med 188, 119–131 (1998).
pubmed: 9653089
pmcid: 2525537
doi: 10.1084/jem.188.1.119
de Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33, 314–325 (2003).
pubmed: 12548562
doi: 10.1002/immu.200310005
Morgan, E. A. et al. Dissection of platelet and myeloid cell defects by conditional targeting of the β
pubmed: 19933310
pmcid: 2845430
doi: 10.1096/fj.09-138420
Gaudenzio, N., Marichal, T., Galli, S. J. & Reber, L. L. Genetic and imaging approaches reveal pro-inflammatory and immunoregulatory roles of mast cells in contact hypersensitivity. Front. Immunol. 9, 1275 (2018).
pubmed: 29922295
pmcid: 5996070
doi: 10.3389/fimmu.2018.01275
Karimi, K., Redegeld, F. A., Heijdra, B. & Nijkamp, F. P. Stem cell factor and interleukin-4 induce murine bone marrow cells to develop into mast cells with connective tissue type characteristics in vitro. Exp. Hematol. 27, 654–662 (1999).
pubmed: 10210323
doi: 10.1016/S0301-472X(98)00083-6
Malbec, O. et al. Peritoneal cell-derived mast cells: an in vitro model of mature serosal-type mouse mast cells. J. Immunol. 178, 6465–6475 (2007).
pubmed: 17475876
doi: 10.4049/jimmunol.178.10.6465
Lee, J. C., Hapel, A. J. & Ihle, J. N. Constitutive production of a unique lymphokine (IL 3) by the WEHI-3 cell line. J. Immunol. 128, 2393–2398 (1982).
pubmed: 6122701
doi: 10.4049/jimmunol.128.6.2393
Eshhar, Z., Ofarim, M. & Waks, T. Generation of hybridomas secreting murine reaginic antibodies of anti-DNP specificity. J. Immunol. 124, 775–780 (1980).
pubmed: 7188700
doi: 10.4049/jimmunol.124.2.775
Castello-Cros, R. & Cukierman, E. Stromagenesis during tumorigenesis: characterization of tumor-associated fibroblasts and stroma-derived 3D matrices. Methods Mol. Biol. 522, 275–305 (2009).
pubmed: 19247611
pmcid: 2670062
doi: 10.1007/978-1-59745-413-1_19
Heit, B. & Kubes, P. Measuring chemotaxis and chemokinesis: the under-agarose cell migration assay. Sci. STKE 2003, PL5 (2003).
pubmed: 12591998
doi: 10.1126/stke.2003.170.pl5
Thiriot, A. et al. Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues. BMC Biol. 15, 45 (2017).
pubmed: 28526034
pmcid: 5438556
doi: 10.1186/s12915-017-0381-7
Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-seq. Genome Biol. 17, 77 (2016).
pubmed: 27121950
pmcid: 4848782
doi: 10.1186/s13059-016-0938-8
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).
pubmed: 20080505
pmcid: 2828108
doi: 10.1093/bioinformatics/btp698
Grün, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014).
pubmed: 24747814
doi: 10.1038/nmeth.2930
Grün, D. et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19, 266–277 (2016).
pubmed: 27345837
pmcid: 4985539
doi: 10.1016/j.stem.2016.05.010
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621
pmcid: 3218662
doi: 10.1186/gb-2010-11-10-r106
McInnes, L., Healy, J., Saul, N. & Grossberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).
doi: 10.21105/joss.00861
Wienert, S. et al. CognitionMaster: an object-based image analysis framework. Diagn. Pathol. 8, 34 (2013).
pubmed: 23445542
pmcid: 3626931
doi: 10.1186/1746-1596-8-34
Paterson, N. & Lämmermann, T. Macrophage network dynamics depend on haptokinesis for optimal local surveillance. eLife 11, e75354 (2022).
pubmed: 35343899
pmcid: 8963880
doi: 10.7554/eLife.75354
Kienle, K. et al. Neutrophils self-limit swarming to contain bacterial growth in vivo. Science 372, eabe7729 (2021).
pubmed: 34140358
pmcid: 8926156
doi: 10.1126/science.abe7729