Slow integrin-dependent migration organizes networks of tissue-resident mast cells.


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
06 2023
Historique:
received: 05 08 2022
accepted: 15 03 2023
medline: 2 6 2023
pubmed: 21 4 2023
entrez: 20 04 2023
Statut: ppublish

Résumé

Immune cell locomotion is associated with amoeboid migration, a flexible mode of movement, which depends on rapid cycles of actin polymerization and actomyosin contraction

Identifiants

pubmed: 37081147
doi: 10.1038/s41590-023-01493-2
pii: 10.1038/s41590-023-01493-2
pmc: PMC10232366
doi:

Substances chimiques

Integrins 0
Actins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

915-924

Subventions

Organisme : Medical Research Council
ID : MC_UU_00016/7
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00029/9
Pays : United Kingdom

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2023. The Author(s).

Références

Lämmermann, T. & Sixt, M. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 21, 636–644 (2009).
pubmed: 19523798 doi: 10.1016/j.ceb.2009.05.003
Lämmermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).
pubmed: 18451854 doi: 10.1038/nature06887
Lämmermann, T. & Germain, R. N. The multiple faces of leukocyte interstitial migration. Semin. Immunopathol. 36, 227–251 (2014).
pubmed: 24573488 pmcid: 4118216 doi: 10.1007/s00281-014-0418-8
Reversat, A. et al. Cellular locomotion using environmental topography. Nature 582, 582–585 (2020).
pubmed: 32581372 doi: 10.1038/s41586-020-2283-z
Rottner, K. & Stradal, T. E. B. WASP stings into matrix to lead immune cell migration. J. Cell Biol. 221, e202112087 (2022).
pubmed: 35061007 pmcid: 8789199 doi: 10.1083/jcb.202112087
Yamada, K. M. & Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20, 738–752 (2019).
pubmed: 31582855 doi: 10.1038/s41580-019-0172-9
Krystel-Whittemore, M., Dileepan, K. N. & Wood, J. G. Mast cell: a multi-functional master cell. Front. Immunol. 6, 620 (2015).
pubmed: 26779180
Mukai, K., Tsai, M., Starkl, P., Marichal, T. & Galli, S. J. IgE and mast cells in host defense against parasites and venoms. Semin. Immunopathol. 38, 581–603 (2016).
pubmed: 27225312 pmcid: 5010491 doi: 10.1007/s00281-016-0565-1
St. John, A. L., Rathore, A. P. S. & Ginhoux, F. New perspectives on the origins and heterogeneity of mast cells. Nat. Rev. Immunol. 23, 55–68 (2022).
doi: 10.1038/s41577-022-00731-2
Tsai, M., Valent, P. & Galli, S. J. KIT as a master regulator of the mast cell lineage. J. Allergy Clin. Immunol. 149, 1845–1854 (2022).
Pastwinska, J., Zelechowska, P., Walczak-Drzewiecka, A., Brzezinska-Blaszczyk, E. & Dastych, J. The art of mast cell adhesion. Cells 9, 2664 (2020).
pubmed: 33322506 pmcid: 7764012 doi: 10.3390/cells9122664
Tikoo, S. et al. Imaging of mast cells. Immunol. Rev. 282, 58–72 (2018).
pubmed: 29431206 doi: 10.1111/imr.12631
Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell–matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).
pubmed: 11721053 doi: 10.1126/science.1064829
Dastych, J. & Metcalfe, D. D. Stem cell factor induces mast cell adhesion to fibronectin. J. Immunol. 152, 213–219 (1994).
pubmed: 7504710 doi: 10.4049/jimmunol.152.1.213
Lam, V. et al. IgE alone stimulates mast cell adhesion to fibronectin via pathways similar to those used by IgE + antigen but distinct from those used by Steel factor. Blood 102, 1405–1413 (2003).
pubmed: 12702510 doi: 10.1182/blood-2002-10-3176
Calderwood, D. A. & Ginsberg, M. H. Talin forges the links between integrins and actin. Nat. Cell Biol. 5, 694–697 (2003).
pubmed: 12894175 doi: 10.1038/ncb0803-694
Liu, Y. J. et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672 (2015).
pubmed: 25679760 doi: 10.1016/j.cell.2015.01.007
Renkawitz, J. et al. Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 11, 1438–1443 (2009).
pubmed: 19915557 doi: 10.1038/ncb1992
Dudeck, A. et al. Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity 34, 973–984 (2011).
pubmed: 21703544 doi: 10.1016/j.immuni.2011.03.028
Roediger, B. et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat. Immunol. 14, 564–573 (2013).
pubmed: 23603794 pmcid: 4282745 doi: 10.1038/ni.2584
Ghigo, C. et al. Multicolor fate mapping of Langerhans cell homeostasis. J. Exp. Med 210, 1657–1664 (2013).
pubmed: 23940255 pmcid: 3754858 doi: 10.1084/jem.20130403
Columbo, M., Bochner, B. S. & Marone, G. Human skin mast cells express functional β
pubmed: 7538541 doi: 10.4049/jimmunol.154.11.6058
Herman, J. S., Sagar & Grün, D. FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data. Nat. Methods 15, 379–386 (2018).
pubmed: 29630061 doi: 10.1038/nmeth.4662
Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).
pubmed: 21839917 doi: 10.1016/j.devcel.2011.07.001
Morii, E. et al. Regulation of mouse mast cell protease 6 gene expression by transcription factor encoded by the mi locus. Blood 88, 2488–2494 (1996).
pubmed: 8839840 doi: 10.1182/blood.V88.7.2488.bloodjournal8872488
Oppezzo, A. & Rosselli, F. The underestimated role of the microphthalmia-associated transcription factor (MiTF) in normal and pathological haematopoiesis. Cell Biosci. 11, 18 (2021).
pubmed: 33441180 pmcid: 7805242 doi: 10.1186/s13578-021-00529-0
Lämmermann, T. & Kastenmüller, W. Concepts of GPCR-controlled navigation in the immune system. Immunol. Rev. 289, 205–231 (2019).
pubmed: 30977203 pmcid: 6487968 doi: 10.1111/imr.12752
Carlson, T. R., Hu, H., Braren, R., Kim, Y. H. & Wang, R. A. Cell-autonomous requirement for β
pubmed: 18480158 doi: 10.1242/dev.016378
Zhang, Z., Vuori, K., Reed, J. C. & Ruoslahti, E. The α
pubmed: 7541142 pmcid: 41662 doi: 10.1073/pnas.92.13.6161
Metcalfe, D. D. Interaction of mast cells with extracellular matrix proteins. Int. Arch. Allergy Immunol. 107, 60–62 (1995).
pubmed: 7542103 doi: 10.1159/000236931
Scholten, J. et al. Mast cell-specific Cre/loxP-mediated recombination in vivo. Transgenic Res. 17, 307–315 (2008).
pubmed: 17972156 doi: 10.1007/s11248-007-9153-4
Petrich, B. G. et al. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J. Exp. Med 204, 3103–3111 (2007).
pubmed: 18086863 pmcid: 2150986 doi: 10.1084/jem.20071800
Potocnik, A. J., Brakebusch, C. & Fassler, R. Fetal and adult hematopoietic stem cells require β1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12, 653–663 (2000).
pubmed: 10894165 doi: 10.1016/S1074-7613(00)80216-2
Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).
pubmed: 11299042 pmcid: 31338 doi: 10.1186/1471-213X-1-4
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
pubmed: 20023653 doi: 10.1038/nn.2467
Buono, M. et al. A dynamic niche provides Kit ligand in a stage-specific manner to the earliest thymocyte progenitors. Nat. Cell Biol. 18, 157–167 (2016).
pubmed: 26780297 pmcid: 4972409 doi: 10.1038/ncb3299
Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).
pubmed: 22281595 pmcid: 3270376 doi: 10.1038/nature10783
Hughes, E. D. et al. Genetic variation in C57BL/6 ES cell lines and genetic instability in the Bruce4 C57BL/6 ES cell line. Mamm. Genome 18, 549–558 (2007).
pubmed: 17828574 doi: 10.1007/s00335-007-9054-0
Townsend, D., Witkop, C. J. Jr. & Mattson, J. Tyrosinase subcellular distribution and kinetic parameters in wild type and C-locus mutant C57BL/6J mice. J. Exp. Zool. 216, 113–119 (1981).
pubmed: 6793688 doi: 10.1002/jez.1402160112
Xin, H. B., Deng, K. Y., Rishniw, M., Ji, G. & Kotlikoff, M. I. Smooth muscle expression of Cre recombinase and eGFP in transgenic mice. Physiol. Genomics 10, 211–215 (2002).
pubmed: 12209023 doi: 10.1152/physiolgenomics.00054.2002
Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V
pubmed: 1547487 doi: 10.1016/0092-8674(92)90029-C
Riedl, J. et al. Lifeact mice for studying F-actin dynamics. Nat. Methods 7, 168–169 (2010).
pubmed: 20195247 doi: 10.1038/nmeth0310-168
Scharffetter-Kochanek, K. et al. Spontaneous skin ulceration and defective T cell function in CD18 null mice. J. Exp. Med 188, 119–131 (1998).
pubmed: 9653089 pmcid: 2525537 doi: 10.1084/jem.188.1.119
de Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33, 314–325 (2003).
pubmed: 12548562 doi: 10.1002/immu.200310005
Morgan, E. A. et al. Dissection of platelet and myeloid cell defects by conditional targeting of the β
pubmed: 19933310 pmcid: 2845430 doi: 10.1096/fj.09-138420
Gaudenzio, N., Marichal, T., Galli, S. J. & Reber, L. L. Genetic and imaging approaches reveal pro-inflammatory and immunoregulatory roles of mast cells in contact hypersensitivity. Front. Immunol. 9, 1275 (2018).
pubmed: 29922295 pmcid: 5996070 doi: 10.3389/fimmu.2018.01275
Karimi, K., Redegeld, F. A., Heijdra, B. & Nijkamp, F. P. Stem cell factor and interleukin-4 induce murine bone marrow cells to develop into mast cells with connective tissue type characteristics in vitro. Exp. Hematol. 27, 654–662 (1999).
pubmed: 10210323 doi: 10.1016/S0301-472X(98)00083-6
Malbec, O. et al. Peritoneal cell-derived mast cells: an in vitro model of mature serosal-type mouse mast cells. J. Immunol. 178, 6465–6475 (2007).
pubmed: 17475876 doi: 10.4049/jimmunol.178.10.6465
Lee, J. C., Hapel, A. J. & Ihle, J. N. Constitutive production of a unique lymphokine (IL 3) by the WEHI-3 cell line. J. Immunol. 128, 2393–2398 (1982).
pubmed: 6122701 doi: 10.4049/jimmunol.128.6.2393
Eshhar, Z., Ofarim, M. & Waks, T. Generation of hybridomas secreting murine reaginic antibodies of anti-DNP specificity. J. Immunol. 124, 775–780 (1980).
pubmed: 7188700 doi: 10.4049/jimmunol.124.2.775
Castello-Cros, R. & Cukierman, E. Stromagenesis during tumorigenesis: characterization of tumor-associated fibroblasts and stroma-derived 3D matrices. Methods Mol. Biol. 522, 275–305 (2009).
pubmed: 19247611 pmcid: 2670062 doi: 10.1007/978-1-59745-413-1_19
Heit, B. & Kubes, P. Measuring chemotaxis and chemokinesis: the under-agarose cell migration assay. Sci. STKE 2003, PL5 (2003).
pubmed: 12591998 doi: 10.1126/stke.2003.170.pl5
Thiriot, A. et al. Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues. BMC Biol. 15, 45 (2017).
pubmed: 28526034 pmcid: 5438556 doi: 10.1186/s12915-017-0381-7
Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-seq. Genome Biol. 17, 77 (2016).
pubmed: 27121950 pmcid: 4848782 doi: 10.1186/s13059-016-0938-8
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).
pubmed: 20080505 pmcid: 2828108 doi: 10.1093/bioinformatics/btp698
Grün, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014).
pubmed: 24747814 doi: 10.1038/nmeth.2930
Grün, D. et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19, 266–277 (2016).
pubmed: 27345837 pmcid: 4985539 doi: 10.1016/j.stem.2016.05.010
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621 pmcid: 3218662 doi: 10.1186/gb-2010-11-10-r106
McInnes, L., Healy, J., Saul, N. & Grossberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).
doi: 10.21105/joss.00861
Wienert, S. et al. CognitionMaster: an object-based image analysis framework. Diagn. Pathol. 8, 34 (2013).
pubmed: 23445542 pmcid: 3626931 doi: 10.1186/1746-1596-8-34
Paterson, N. & Lämmermann, T. Macrophage network dynamics depend on haptokinesis for optimal local surveillance. eLife 11, e75354 (2022).
pubmed: 35343899 pmcid: 8963880 doi: 10.7554/eLife.75354
Kienle, K. et al. Neutrophils self-limit swarming to contain bacterial growth in vivo. Science 372, eabe7729 (2021).
pubmed: 34140358 pmcid: 8926156 doi: 10.1126/science.abe7729

Auteurs

Lukas Kaltenbach (L)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.

Paloma Martzloff (P)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.

Sarah K Bambach (SK)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.

Nadim Aizarani (N)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.

Michael Mihlan (M)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.

Alina Gavrilov (A)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.

Katharina M Glaser (KM)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.

Manuel Stecher (M)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.

Roland Thünauer (R)

Advanced Light and Fluorescence Microscopy Facility, Centre for Structural Systems Biology (CSSB) and University of Hamburg, Hamburg, Germany.
Leibniz Institute of Virology (LIV), Hamburg, Germany.

Aude Thiriot (A)

Department of Immunology and HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, USA.
The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.

Klaus Heger (K)

Department of Cancer Immunology, Genentech, South San Francisco, CA, USA.

Katrin Kierdorf (K)

Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Stephan Wienert (S)

Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany.

Ulrich H von Andrian (UH)

Department of Immunology and HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, USA.
The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.

Marc Schmidt-Supprian (M)

Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.

Claus Nerlov (C)

MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.

Frederick Klauschen (F)

Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany.
Berlin Institute for the Foundation of Learning and Data (BIFOLD) and Charité Universitätsmedizin Berlin, Berlin, Germany.

Axel Roers (A)

Institute for Immunology, Universitätsklinikum Heidelberg, Heidelberg, Germany.

Marc Bajénoff (M)

Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.

Dominic Grün (D)

Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for infection Research (HZI), Würzburg, Germany.

Tim Lämmermann (T)

Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany. laemmermann@ie-freiburg.mpg.de.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH