Towards Wearable Estimation of Tidal Volume via Electrocardiogram and Seismocardiogram Signals.
continuous respiratory monitoring
electrocardiogram
seismocardiogram
tidal volume estimation
wearable sensing
Journal
IEEE sensors journal
ISSN: 1530-437X
Titre abrégé: IEEE Sens J
Pays: United States
ID NLM: 101212357
Informations de publication
Date de publication:
15 Sep 2022
15 Sep 2022
Historique:
medline:
24
4
2023
pubmed:
24
4
2023
entrez:
24
04
2023
Statut:
ppublish
Résumé
The current COVID-19 pandemic highlights the critical importance of ubiquitous respiratory health monitoring. The two fundamental elements of monitoring respiration are respiration rate (the frequency of breathing) and tidal volume (TV, the volume of air breathed by the lungs in each breath). Wearable sensing systems have been demonstrated to provide accurate measurement of respiration rate, but TV remains challenging to measure accurately with wearable and unobtrusive technology. In this work, we leveraged electrocardiogram (ECG) and seismocardiogram (SCG) measurements obtained with a custom wearable sensing patch to derive an estimate of TV from healthy human participants. Specifically, we fused both ECG-derived and SCG-derived respiratory signals (EDR and SDR) and trained a machine learning model with gas rebreathing as the ground truth to estimate TV. The respiration cycle modulates ECG and SCG signals in multiple different ways that are synergistic. Thus, here we extract EDRs and SDRs using a multitude of different demodulation techniques. The extracted features are used to train a subject independent machine learning model to accurately estimate TV. By fusing the extracted EDRs and SDRs, we were able to estimate the TV with a root-mean-square error (RMSE) of 181.45 mL and Pearson correlation coefficient (r) of 0.61, with a global subject-independent model. We further show that SDRs are better TV estimators than EDRs. Among SDRs, amplitude modulated (AM) SCG features are the most correlated to TV. We demonstrated that fusing EDRs and SDRs can result in moderately accurate estimation of TV using a subject-independent model. Additionally, we highlight the most informative features for estimating TV. This work presents a significant step towards achieving continuous, calibration free, and unobtrusive TV estimation, which could advance the state of the art in wearable respiratory monitoring.
Identifiants
pubmed: 37091042
doi: 10.1109/jsen.2022.3196601
pmc: PMC10120872
mid: NIHMS1836432
doi:
Types de publication
Journal Article
Langues
eng
Pagination
18093-18103Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL130619
Pays : United States
Références
IEEE J Biomed Health Inform. 2019 Nov;23(6):2365-2374
pubmed: 30703050
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2282-5
pubmed: 25570443
Sci Rep. 2020 Mar 31;10(1):5704
pubmed: 32235865
IEEE Trans Biomed Eng. 2017 Aug;64(8):1914-1923
pubmed: 27875128
Physiol Meas. 2016 Apr;37(4):610-26
pubmed: 27027672
NPJ Digit Med. 2020 Nov 30;3(1):156
pubmed: 33299095
IEEE Rev Biomed Eng. 2018;11:2-20
pubmed: 29990026
IEEE Trans Biomed Circuits Syst. 2016 Apr;10(2):280-8
pubmed: 25974943
Front Digit Health. 2020 Jun 23;2:8
pubmed: 34713021
NPJ Digit Med. 2019 Feb 13;2:8
pubmed: 31304358
J Intensive Care Med. 2003 Mar-Apr;18(2):92-9
pubmed: 15189655
IEEE Trans Biomed Eng. 2020 Mar;67(3):905-914
pubmed: 31226064
Chest. 2000 Aug;118(2):492-502
pubmed: 10936146
Circulation. 2000 Jun 13;101(23):E215-20
pubmed: 10851218
IEEE Trans Biomed Eng. 2013 Jul;60(7):1946-53
pubmed: 23399950
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5556-5559
pubmed: 31947114
Physiol Meas. 2017 May;38(5):669-690
pubmed: 28296645
Med Biol Eng Comput. 2003 Jul;41(4):377-83
pubmed: 12892358
Psychophysiology. 1993 Mar;30(2):183-96
pubmed: 8434081
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4058-61
pubmed: 24110623
IEEE J Transl Eng Health Med. 2014 Oct 31;2:1800912
pubmed: 27170871
Med Biol Eng Comput. 1992 Sep;30(5):533-7
pubmed: 1293445
Crit Rev Biomed Eng. 2000;28(1-2):173-8
pubmed: 10999382
J Electrocardiol. 2015 Nov-Dec;48(6):933-7
pubmed: 26364232
NPJ Digit Med. 2020 Jul 28;3:98
pubmed: 32793811
Circ Heart Fail. 2018 Jan;11(1):e004313
pubmed: 29330154
IEEE Trans Biomed Eng. 1985 Mar;32(3):230-6
pubmed: 3997178
Crit Care Med. 2001 Mar;29(3):511-8
pubmed: 11373413
Ann Biomed Eng. 2014 Oct;42(10):2072-83
pubmed: 25118665
IEEE J Biomed Health Inform. 2017 May;21(3):764-777
pubmed: 26915142
IEEE Trans Biomed Eng. 2020 Jan;67(1):193-202
pubmed: 30990416
J Card Fail. 2020 Nov;26(11):948-958
pubmed: 32473379
IEEE J Biomed Health Inform. 2020 Apr;24(4):1080-1092
pubmed: 31369387
Physiol Meas. 2012 Oct;33(10):1643-60
pubmed: 22986375
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6773-6
pubmed: 19963690
Front Physiol. 2020 May 29;11:635
pubmed: 32574240
Respiration. 2010;79(2):112-20
pubmed: 19365103
Nat Med. 2021 Jan;27(1):73-77
pubmed: 33122860
PLoS One. 2015 Dec 14;10(12):e0144626
pubmed: 26658343
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4272-4275
pubmed: 28269226
Nurs Crit Care. 2011 Jul-Aug;16(4):164-9
pubmed: 21651656
Am J Respir Crit Care Med. 2019 Oct 15;200(8):e70-e88
pubmed: 31613151
J Pediatr. 1961 Nov;59:710-4
pubmed: 13881039
Respir Physiol Neurobiol. 2010 Nov 30;174(1-2):111-8
pubmed: 20420940
IEEE J Biomed Health Inform. 2021 Mar;25(3):634-646
pubmed: 32750964
IEEE J Biomed Health Inform. 2015 Sep;19(5):1532-48
pubmed: 26087508
Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H796-805
pubmed: 19136603