Hybrid FES-exoskeleton control: Using MPC to distribute actuation for elbow and wrist movements.
functional electrical stimulation (FES)
hybrid control (HC)
model predictive control (MPC)
movement assistance
upper limb exoskeleton
Journal
Frontiers in neurorobotics
ISSN: 1662-5218
Titre abrégé: Front Neurorobot
Pays: Switzerland
ID NLM: 101477958
Informations de publication
Date de publication:
2023
2023
Historique:
received:
20
12
2022
accepted:
06
03
2023
medline:
24
4
2023
pubmed:
24
4
2023
entrez:
24
04
2023
Statut:
epublish
Résumé
Individuals who have suffered a cervical spinal cord injury prioritize the recovery of upper limb function for completing activities of daily living. Hybrid FES-exoskeleton systems have the potential to assist this population by providing a portable, powered, and wearable device; however, realization of this combination of technologies has been challenging. In particular, it has been difficult to show generalizability across motions, and to define optimal distribution of actuation, given the complex nature of the combined dynamic system. In this paper, we present a hybrid controller using a model predictive control (MPC) formulation that combines the actuation of both an exoskeleton and an FES system. The MPC cost function is designed to distribute actuation on a single degree of freedom to favor FES control effort, reducing exoskeleton power consumption, while ensuring smooth movements along different trajectories. Our controller was tested with nine able-bodied participants using FES surface stimulation paired with an upper limb powered exoskeleton. The hybrid controller was compared to an exoskeleton alone controller, and we measured trajectory error and torque while moving the participant through two elbow flexion/extension trajectories, and separately through two wrist flexion/extension trajectories. The MPC-based hybrid controller showed a reduction in sum of squared torques by an average of 48.7 and 57.9% on the elbow flexion/extension and wrist flexion/extension joints respectively, with only small differences in tracking accuracy compared to the exoskeleton alone. To realize practical implementation of hybrid FES-exoskeleton systems, the control strategy requires translation to multi-DOF movements, achieving more consistent improvement across participants, and balancing control to more fully leverage the muscles' capabilities.
Identifiants
pubmed: 37091069
doi: 10.3389/fnbot.2023.1127783
pmc: PMC10118008
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1127783Informations de copyright
Copyright © 2023 Dunkelberger, Berning, Schearer and O'Malley.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Neurotrauma. 2004 Oct;21(10):1371-83
pubmed: 15672628
IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):224-232
pubmed: 28952946
Artif Intell Med. 2013 Oct;59(2):133-42
pubmed: 24064256
J Rehabil Res Dev. 2000 Nov-Dec;37(6):653-62
pubmed: 11321001
IEEE Int Conf Rehabil Robot. 2022 Jul;2022:1-6
pubmed: 36176144
J Rehabil Res Dev. 2013;50(2):145-60
pubmed: 23760996
Spinal Cord. 1997 Dec;35(12):829-40
pubmed: 9429262
J Rehabil Res Dev. 2014;51(7):1077-94
pubmed: 25437932
Lancet. 2017 May 6;389(10081):1821-1830
pubmed: 28363483
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:56-61
pubmed: 28813793
IEEE Trans Biomed Eng. 1989 Jul;36(7):654-67
pubmed: 2744790
IEEE Trans Control Syst Technol. 2021 Sep;29(5):2180-2191
pubmed: 35309163
IEEE Int Conf Rehabil Robot. 2022 Jul;2022:1-6
pubmed: 36176151
Front Neurosci. 2014 Sep 02;8:262
pubmed: 25228853
Curr Phys Med Rehabil Rep. 2014 Sep;2(3):184-195
pubmed: 26005600
Phys Med Rehabil Clin N Am. 2019 May;30(2):367-384
pubmed: 30954153
Front Neurorobot. 2017 Jun 13;11:26
pubmed: 28659784
Am J Phys Med Rehabil. 2012 Nov;91(11 Suppl 3):S242-54
pubmed: 23080040
Gait Posture. 2019 Mar;69:176-186
pubmed: 30769260
Artif Organs. 2008 Sep;32(9):725-9
pubmed: 18684204
Spinal Cord. 1999 Aug;37(8):585-91
pubmed: 10455536
Paraplegia. 1976 Aug;14(2):115-21
pubmed: 972757
Am J Phys Med Rehabil. 2017 Oct;96(10 Suppl 1):S171-S177
pubmed: 28857769
IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):455-66
pubmed: 25915961
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:6398-6401
pubmed: 34892576
Brain. 2002 Dec;125(Pt 12):2626-34
pubmed: 12429590
Arch Phys Med Rehabil. 2014 Jun;95(6):1201-1211.e1
pubmed: 24561055
Neurorehabil Neural Repair. 2005 Mar;19(1):33-45
pubmed: 15673842
J Neuroeng Rehabil. 2014 Mar 04;11:27
pubmed: 24594302
Exp Neurol. 2020 Jun;328:113274
pubmed: 32145251