Conjugated photothermal materials and structure design for solar steam generation.
absorption
conjugated molecules
energy transfer
photothermal materials
solar steam generation
Journal
Beilstein journal of nanotechnology
ISSN: 2190-4286
Titre abrégé: Beilstein J Nanotechnol
Pays: Germany
ID NLM: 101551563
Informations de publication
Date de publication:
2023
2023
Historique:
received:
02
01
2023
accepted:
15
03
2023
medline:
24
4
2023
pubmed:
24
4
2023
entrez:
24
04
2023
Statut:
epublish
Résumé
With the development of solar steam generation (SSG) for clean water production, conjugated photothermal materials (PTMs) have attracted significant interest because of their advantages over metallic and inorganic PTMs in terms of high light absorption, designable molecular structures, flexible morphology, and solution processability. We review here the recent progress in solar steam generation devices based on conjugated organic materials. Conjugated organic materials are processed into fibers, membranes, and porous structures. Therefore, nanostructure design based on the concept of nanoarchitectonics is crucial to achieve high SSG efficiency. We discuss the considerations for designing SSG absorbers and describe commonly used conjugated organic materials and structural designs.
Identifiants
pubmed: 37091288
doi: 10.3762/bjnano.14.36
pmc: PMC10113523
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
454-466Informations de copyright
Copyright © 2023, Lin and Michinobu.
Références
Angew Chem Int Ed Engl. 2022 Jul 25;61(30):e202204604
pubmed: 35543996
Chem Rev. 2015 Oct 14;115(19):11012-42
pubmed: 26244706
Adv Mater. 2021 Sep;33(36):e2102258
pubmed: 34309084
Angew Chem Int Ed Engl. 2016 Aug 1;55(32):9196-201
pubmed: 27328742
Adv Mater. 2019 May;31(19):e1807716
pubmed: 30920701
Nanoscale. 2019 Jun 13;11(23):11121-11127
pubmed: 31070200
ACS Appl Mater Interfaces. 2022 Mar 16;14(10):12927-12935
pubmed: 35232017
ACS Appl Mater Interfaces. 2022 Jan 26;14(3):4522-4531
pubmed: 35025216
Chem Sci. 2017 Nov 1;9(3):623-628
pubmed: 29629127
Adv Sci (Weinh). 2022 Feb;9(6):e2104181
pubmed: 35018734
Nat Nanotechnol. 2018 Jun;13(6):489-495
pubmed: 29610528
J Am Chem Soc. 2017 Dec 6;139(48):17547-17564
pubmed: 29160700
ChemSusChem. 2020 Feb 21;13(4):749-755
pubmed: 31863570
Polymers (Basel). 2022 Apr 06;14(7):
pubmed: 35406358
ACS Appl Mater Interfaces. 2021 Aug 18;13(32):38365-38374
pubmed: 34351125
ACS Appl Mater Interfaces. 2021 Oct 27;13(42):49860-49867
pubmed: 34637267
ACS Appl Mater Interfaces. 2021 Sep 1;13(34):40664-40672
pubmed: 34412478
Adv Mater. 2021 Nov;33(47):e2005940
pubmed: 34050686
ACS Appl Mater Interfaces. 2022 May 4;14(17):19409-19418
pubmed: 35446540
ACS Appl Mater Interfaces. 2021 Dec 8;13(48):57153-57162
pubmed: 34825819
Adv Sci (Weinh). 2021 Feb 01;8(7):2004552
pubmed: 33854905
Adv Sci (Weinh). 2022 Jan;9(3):e2103926
pubmed: 34825527
ACS Appl Mater Interfaces. 2021 Jul 14;13(27):31624-31634
pubmed: 34219452
ACS Appl Mater Interfaces. 2018 Apr 4;10(13):10998-11007
pubmed: 29533662
ACS Appl Mater Interfaces. 2020 Feb 5;12(5):6144-6150
pubmed: 31918540
Polymers (Basel). 2021 Dec 10;13(24):
pubmed: 34960886
ACS Appl Mater Interfaces. 2021 Feb 17;13(6):7617-7624
pubmed: 33538165
ACS Appl Mater Interfaces. 2022 Jun 1;14(21):24766-24774
pubmed: 35579439
Angew Chem Int Ed Engl. 2018 Mar 26;57(14):3552-3577
pubmed: 29469183
J Colloid Interface Sci. 2021 Jan 1;581(Pt B):504-513
pubmed: 32805670