Multiple Valence Bands Convergence and Localized Lattice Engineering Lead to Superhigh Thermoelectric Figure of Merit in MnTe.
dislocations
lattice thermal conductivity
localized lattice imperfections
multiple valence bands convergence
nanorods
Journal
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
ISSN: 2198-3844
Titre abrégé: Adv Sci (Weinh)
Pays: Germany
ID NLM: 101664569
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
revised:
22
02
2023
received:
08
11
2022
medline:
24
4
2023
pubmed:
24
4
2023
entrez:
24
04
2023
Statut:
ppublish
Résumé
MnTe has been considered a promising candidate for lead-free mid-temperature range thermoelectric clean energy conversions. However, the widespread use of this technology is constrained by the relatively low-cost performance of materials. Developing environmentally friendly thermoelectrics with high performance and earth-abundant elements is thus an urgent task. MnTe is a candidate, yet a peak ZT of 1.4 achieved so far is less satisfactory. Here, a remarkably high ZT of 1.6 at 873 K in MnTe system is realized by facilitating multiple valence band convergence and localized lattice engineering. It is demonstrated that SbGe incorporation promotes the convergence of multiple electronic valence bands in MnTe. Simultaneously, the carrier concentration can be optimized by SbGeS alloying, which significantly enhances the power factor. Simultaneously, MnS nanorods combined with dislocations and lattice distortions lead to strong phonon scattering, resulting in a markedly low lattice thermal conductivity(κ
Identifiants
pubmed: 37092577
doi: 10.1002/advs.202206342
pmc: PMC10265067
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2206342Subventions
Organisme : National Natural Science Foundation of China
Organisme : Young and Middle-aged Academic Leader of Jiangsu Province
Organisme : Fundamental Research Funds for the Central Universities
Informations de copyright
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
Références
J Am Chem Soc. 2018 Jan 10;140(1):499-505
pubmed: 29243922
Phys Rev B Condens Matter. 1993 Aug 15;48(7):4978
pubmed: 10021600
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
pubmed: 10062328
J Am Chem Soc. 2017 Dec 27;139(51):18732-18738
pubmed: 29182275
Sci Adv. 2019 Sep 13;5(9):eaat9461
pubmed: 31548980
Nature. 2012 Sep 20;489(7416):414-8
pubmed: 22996556
J Am Chem Soc. 2021 Sep 1;143(34):13990-13998
pubmed: 34410126
ACS Appl Mater Interfaces. 2022 Jan 26;14(3):4091-4099
pubmed: 35001609
Adv Sci (Weinh). 2023 Jun;10(17):e2206342
pubmed: 37092577
ACS Nano. 2021 May 25;15(5):8204-8215
pubmed: 33852270
Adv Mater. 2017 Jan;29(1):
pubmed: 27862419
ACS Nano. 2021 Dec 28;15(12):19345-19356
pubmed: 34734696
Phys Rev Lett. 2007 Jan 26;98(4):045501
pubmed: 17358784
ACS Appl Mater Interfaces. 2019 Aug 7;11(31):28221-28227
pubmed: 31305979
Angew Chem Int Ed Engl. 2018 Nov 12;57(46):15167-15171
pubmed: 30225858
Nat Chem. 2011 Feb;3(2):160-6
pubmed: 21258390
Chem Rev. 2021 Mar 10;121(5):3031-3060
pubmed: 33481581
Science. 2008 Jul 25;321(5888):554-7
pubmed: 18653890
J Am Chem Soc. 2016 Oct 19;138(41):13647-13654
pubmed: 27709927
ACS Appl Mater Interfaces. 2018 Aug 1;10(30):25519-25528
pubmed: 29979034
Science. 2020 Mar 13;367(6483):1196-1197
pubmed: 32165572
J Am Chem Soc. 2018 Feb 21;140(7):2673-2686
pubmed: 29350916