Mowing accelerates phosphorus cycling without depleting soil phosphorus pool.

carbon allocation grassland utilization microbial activity microbial extracellular enzyme mowing phosphorus cycle plant phosphorus acquisition root exudation soil phosphorus pool

Journal

Ecological applications : a publication of the Ecological Society of America
ISSN: 1051-0761
Titre abrégé: Ecol Appl
Pays: United States
ID NLM: 9889808

Informations de publication

Date de publication:
07 2023
Historique:
revised: 01 04 2023
received: 16 11 2022
accepted: 11 04 2023
medline: 4 7 2023
pubmed: 24 4 2023
entrez: 24 04 2023
Statut: ppublish

Résumé

Mowing, as a common grassland utilization strategy, affects nutrient status in soil by plant biomass removal. Phosphorus (P) cycle plays an important role in determining grassland productivity. However, few studies have addressed the impacts of mowing on P cycling in grassland ecosystems. Here, we investigated the effects of various mowing regimes on soil P fractions and P accumulation in plants and litters. We specifically explored the mechanisms by which mowing regulates ecosystem P cycling by linking aboveground community with soil properties. Our results showed that mowing increased soil dissolvable P concentrations, which probably met the demand for P absorption and utilization by plants, thus contributing to an increased P accumulation by plants. Mowing promoted grassland P cycling by a reciprocal relationship between plants and microbes. Short-term mowing enhanced P cycling mainly through increased root exudation-evoked the extracellular enzyme activity of microbes rather than the alternations in microbial biomass and community composition. Long-term mowing increased P cycling mainly by promoting carbon allocation to roots, thereby leading to greater microbial metabolic activity. Although mowing-stimulation of organic P mineralization lasted for 15 consecutive years, mowing did not result in soil P depletion. These results demonstrate that P removal by mowing will not necessarily lead to soil P limitation. Our findings would advance the knowledge on soil P dynamic under mowing and contribute to resource-efficient grassland management.

Identifiants

pubmed: 37092906
doi: 10.1002/eap.2861
doi:

Substances chimiques

Carbon 7440-44-0
Nitrogen N762921K75
Phosphorus 27YLU75U4W
Soil 0

Banques de données

figshare
['10.6084/m9.figshare.22637797']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2861

Informations de copyright

© 2023 The Ecological Society of America.

Références

Achat, D. L., M. R. Bakker, and C. Morel. 2009. “Process-Based Assessment of Phosphorus Availability in a Low Phosphorus Sorbing Forest Soil Using Isotopic Dilution Methods.” Soil Science Society of America Journal 73: 2131-42. https://doi.org/10.2136/sssaj2009.0009.
Antonsen, H., and P. A. Olsson. 2005. “Relative Importance of Burning, Mowing and Species Translocation in the Restoration of a Former Boreal Hayfield: Responses of Plant Diversity and the Microbial Community.” Journal of Applied Ecology 42: 337-47. https://doi.org/10.1111/j.1365-2664.2005.01023.x.
Arredondo, J. T., and D. A. Johnson. 1999. “Root Architecture and Biomass Allocation of Three Range Grasses in Response to Nonuniform Supply of Nutrients and Shoot Defoliation.” New Phytologist 143: 373-85. https://doi.org/10.1046/j.1469-8137.1999.00460.x.
Bai, W., D. Guo, Q. Tian, N. Liu, W. Cheng, L. Li, W.-H. Zhang, and R. McCulley. 2015. “Differential Responses of Grasses and Forbs Led to Marked Reduction in below-Ground Productivity in Temperate Steppe Following Chronic N Deposition.” Journal of Ecology 103: 1570-9. https://doi.org/10.1111/1365-2745.12468.
Bossio, D. A., and K. M. Scow. 1998. “Impacts of Carbon and Flooding on Soil Microbial Communities: Phospholipid Fatty Acid Profiles and Substrate Utilization Patterns.” Microbial Ecology 35: 265-78. https://doi.org/10.1007/s002489900082.
Bragazza, L., C. Siffi, P. Iacumin, and R. Gerdol. 2007. “Mass Loss and Nutrient Release during Litter Decay in Peatland: The Role of Microbial Adaptability to Litter Chemistry.” Soil Biology and Biochemistry 39: 257-67. https://doi.org/10.1016/j.soilbio.2006.07.014.
Bünemann, E. K. 2015. “Assessment of Gross and Net Mineralization Rates of Soil Organic Phosphorus-A Review.” Soil Biology and Biochemistry 89: 82-98. https://doi.org/10.1016/j.soilbio.2015.06.026.
Chen, C., E. Hou, L. M. Condron, G. Condron, M. Esfandbod, J. Olley, and B. L. Turner. 2015. “Soil Phosphorus Fractionation and Nutrient Dynamics along the Cooloola Coastal Dune Chronosequence, Southern Queensland, Australia.” Geoderma 257-258: 4-13. https://doi.org/10.1016/j.geoderma.2015.04.027.
Chen, L., T. Baoyin, and F. Xia. 2022. “Grassland Management Strategies Influence Soil C, N, and P Sequestration through Shifting Plant Community Composition in a Semi-Arid Grasslands of Northern China.” Ecological Indicators 134: 108470. https://doi.org/10.1016/j.ecolind.2021.108470.
Chen, Y., R. Sun, T. Sun, P. Chen, Z. Yu, L. Ding, Y. Jiang, X. Wang, C. Dai, and B. Sun. 2020. “Evidence for Involvement of Keystone Fungal Taxa in Organic Phosphorus Mineralization in Subtropical Soil and the Impact of Labile Carbon.” Soil Biology and Biochemistry 148: 107900. https://doi.org/10.1016/j.soilbio.2020.107900.
Cheng, X., Y. Luo, B. Su, X. Zhou, S. Niu, R. Sherry, E. Weng, and Q. Zhang. 2010. “Experimental Warming and Clipping Altered Litter Carbon and Nitrogen Dynamics in a Tallgrass Prairie.” Agriculture, Ecosystems and Environment 138: 206-13. https://doi.org/10.1016/j.agee.2010.04.019.
Collins, S. L., A. K. Knapp, J. M. Briggs, J. M. Blair, and E. M. Steinauer. 1998. “Modulation of Diversity by Grazing and Mowing in Native Tallgrass Paririe.” Science 280: 745-7. https://doi.org/10.1126/science.280.5364.745.
Cross, A. F., and W. H. Schlesinger. 2001. “Biological and Geochemical Controls on Phosphorus Fractions in Semiarid Soils.” Biogeochemistry 52: 155-72.
Dai, Z., G. Liu, H. Chen, C. Chen, J. Wang, S. Ai, D. Wei, et al. 2020. “Long-Term Nutrient Inputs Shift Soil Microbial Functional Profiles of Phosphorus Cycling in Diverse Agroecosystems.” ISME Journal 14: 757-70. https://doi.org/10.1038/s41396-019-0567-9.
Du, E., W. de Vries, W. Han, X. Liu, Z. Yan, and Y. Jiang. 2016. “Imbalanced Phosphorus and Nitrogen Deposition in China's Forests.” Atmospheric Chemistry and Physics 16: 8571-9. https://doi.org/10.5194/acp-16-8571-2016.
Du, E., C. Terrer, A. F. A. Pellegrini, A. Ahlström, C. J. van Lissa, X. Zhao, N. Xia, X. Wu, and R. B. Jackson. 2020. “Global Patterns of Terrestrial Nitrogen and Phosphorus Limitation.” Nature Geoscience 13: 221-6. https://doi.org/10.1038/s41561-019-0530-4.
Gibbens, R. P., and J. M. Lenz. 2001. “Root Systems of some Chihuahuan Desert Plants.” Journal of Arid Environments 49: 221-63. https://doi.org/10.1006/jare.2000.0784.
Gong, X. Y., Q. Chen, K. Dittert, F. Taube, and S. Lin. 2011. “Nitrogen, Phosphorus and Potassium Nutritional Status of Semiarid Steppe Grassland in Inner Mongolia.” Plant and Soil 340: 265-78. https://doi.org/10.1007/s11104-010-0577-x.
Gu, H., H. Wang, M. Liu, Z. Shangguan, H. Shi, W. Xu, F. Ren, J. Zhu, and J.-S. He. 2022. “Leaf N:P stoichiometry overrides the effect of individual nutrient content on insect herbivore population dynamics in a Tibetan alpine grassland.” Agriculture, Ecosystems and Environment 336: 108032. https://doi.org/10.1016/j.agee.2022.108032.
Güsewell, S. 2004. “N:P Ratios in Terrestrial Plants: Variation and Functional Significance.” New Phytologist 164: 243-66. https://doi.org/10.1111/j.1469-8137.2004.01192.x.
Hamilton, E. W., III, and D. A. Frank. 2001. “Can Plants Stimulate Soil Microbes and their Own Nutrient Supply? Evidence from a Grazing Tolerant Grass.” Ecology 82: 2397-402. https://doi.org/10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2.
Hamilton, E. W., III, D. A. Frank, P. M. Hinchey, and T. R. Murray. 2008. “Defoliation Induces Root Exudation and Triggers Positive Rhizospheric Feedbacks in a Temperate Grassland.” Soil Biology and Biochemistry 40: 2865-73. https://doi.org/10.1016/j.soilbio.2008.08.007.
Hobbie, S. E. 1996. “Temperature and Plant Species Control over Litter Decomposition in Alaskan Tundra.” Ecological Monographs 66: 503-22.
Hou, E., Y. Luo, Y. Kuang, C. Chen, X. Lu, L. Jiang, X. Luo, and D. Wen. 2020. “Global Meta-Analysis Shows Pervasive Phosphorus Limitation of Aboveground Plant Production in Natural Terrestrial Ecosystems.” Nature Communications 11: 637. https://doi.org/10.1038/s41467-020-14492-w.
Ilmarinen, K., J. Mikola, and M. Vestberg. 2008. “Do Interactions with Soil Organisms Mediate Grass Responses to Defoliation?” Soil Biology and Biochemistry 40: 894-905. https://doi.org/10.1016/j.soilbio.2007.11.004.
Khan, K. S., and R. G. Joergensen. 2012. “Relationships between P Fractions and the Microbial Biomass in Soils under Different Land Use Management.” Geoderma 173-174: 274-81. https://doi.org/10.1016/j.geoderma.2011.12.022.
Köhler, B., A. Gigon, P. J. Edwards, B. Krüsi, R. Langenauer, A. Lüscher, and P. Ryser. 2005. “Changes in the Species Composition and Conservation Value of Limestone Grasslands in Northern Switzerland after 22 Years of Contrasting Managements.” Perspectives in Plant Ecology, Evolution and Systematics 7: 51-67. https://doi.org/10.1016/j.ppees.2004.11.003.
Kotas, P., M. Choma, H. Šantrůčková, J. Lepš, J. Tříska, and E. Kaštovská. 2017. “Linking Above- and Belowground Responses to 16 Years of Fertilization, Mowing, and Removal of the Dominant Species in a Temperate Grassland.” Ecosystems 20: 354-67. https://doi.org/10.1007/s10021-016-0031-x.
Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen. 2017. “lmerTest Package: Tests in Linear Mixed Effects Models.” Journal of Statistical Software 82: 1-26. https://doi.org/10.18637/jss.v082.i13.
Lang, F., J. Krüger, W. Amelung, S. Willbold, E. Frossard, E. K. Bünemann, J. Bauhus, et al. 2017. “Soil Phosphorus Supply Controls P Nutrition Strategies of Beech Forest Ecosystems in Central Europe.” Biogeochemistry 136: 5-29. https://doi.org/10.1007/s10533-017-0375-0.
Li, F., W. Zhao, J. Liu, and Z. Huang. 2009. “Degraded Vegetation and Wind Erosion Influence Soil Carbon, Nitrogen and Phosphorus Accumulation in Sandy Grasslands.” Plant and Soil 317: 79-92. https://doi.org/10.1007/s11104-008-9789-8.
Li, J., S. Lin, F. Taube, Q. Pan, and K. Dittert. 2011. “Above and Belowground Net Primary Productivity of Grassland Influenced by Supplemental Water and Nitrogen in Inner Mongolia.” Plant and Soil 340: 253-64. https://doi.org/10.1007/s11104-010-0612-y.
Lin, Y., R. D. Scarlett, and J. Y. King. 2015. “Effects of UV Photodegradation on Subsequent Microbial Decomposition of Bromus Diandrus Litter.” Plant and Soil 395: 263-71. https://doi.org/10.1007/s11104-015-2551-0.
Lü, X. T., Y. Y. Hu, A. A. Wolf, X. G. Han, and Y. Le Bagousse-Pinguet. 2019. “Species Richness Mediates within-Species Nutrient Resorption: Implications for the Biodiversity-Productivity Relationship.” Journal of Ecology 107: 2346-52. https://doi.org/10.1111/1365-2745.13180.
Lü, X. T., F. M. Lü, L. S. Zhou, X. Han, and X. G. Han. 2012. “Stoichiometric Response of Dominant Grasses to Fire and Mowing in a Semi-Arid Grassland.” Journal of Arid Environments 78: 154-60. https://doi.org/10.1016/j.jaridenv.2011.11.008.
Maron, J. L., and R. L. Jefferies. 2001. “Restoring Enriched Grasslands: Effects of Mowing on Speciesrichness, Productivity, and Nitrogen Retention.” Ecological Applications 11: 1088-100.
Moche, M., J. Gutknecht, E. Schulz, U. Langer, and J. Rinklebe. 2015. “Monthly Dynamics of Microbial Community Structure and their Controlling Factors in Three Floodplain Soils.” Soil Biology and Biochemistry 90: 169-78. https://doi.org/10.1016/j.soilbio.2015.07.006.
Niu, Y. F., R. S. Chai, G. L. Jin, H. Wang, C. X. Tang, and Y. S. Zhang. 2013. “Responses of Root Architecture Development to Low Phosphorus Availability: A Review.” Annals of Botany 112: 391-408. https://doi.org/10.1093/aob/mcs285.
Oelmann, Y., Y. Kreutziger, V. M. Temperton, N. Buchmann, C. Roscher, J. Schumacher, E.-D. Schulze, W. W. Weisser, and W. Wilcke. 2007. “Nitrogen and Phosphorus Budgets in Experimental Grasslands of Variable Diversity.” Journal of Environmental Quality 36: 396-407. https://doi.org/10.2134/jeq2006.0217.
Oelmann, Y., M. Lange, S. Leimer, C. Roscher, F. Aburto, F. Alt, N. Bange, et al. 2021. “Above- and Belowground Biodiversity Jointly Tighten the P Cycle in Agricultural Grasslands.” Nature Communications 12: 4431. https://doi.org/10.1038/s41467-021-24714-4.
R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Robson, T. M., S. Lavorela, J.-C. Clementa, and X. L. Rouxc. 2007. “Neglect of Mowing and Manuring Leads to Slower Nitrogen Cycling in Subalpine Grasslands.” Soil Biology & Biochemistry 39: 930-41. https://doi.org/10.1016/j.soilbio.2006.11.004.
Romanyà, J., J. M. Blanco-Moreno, and F. X. Sans. 2017. “Phosphorus Mobilization in Low-P Arable Soils May Involve Soil Organic C Depletion.” Soil Biology and Biochemistry 113: 250-9. https://doi.org/10.1016/j.soilbio.2017.06.015.
Rowe, H. I. 2010. “Tricks of the Trade: Techniques and Opinions from 38 Experts in Tallgrass Prairie Restoration.” Restoration Ecology 18: 253-62. https://doi.org/10.1111/j.1526-100X.2010.00663.x.
Rumpel, C., A. Crème, P. T. Ngo, G. Velásquez, M. L. Mora, and A. Chabbi. 2015. “The Impact of Grassland Management on Biogeochemical Cycles Involving Carbon, Nitrogen and Phosphorus.” Journal of Soil Science and Plant Nutrition 15: 353-71. https://doi.org/10.4067/s0718-95162015005000034.
Saiya-Corka, K. R., R. L. Sinsabaugha, and D. R. Zak. 2002. “The Effects of Long Term Nitrogen Deposition on Extracellular Enzyme Activity in an Acer Saccharum Forest Soil.” Soil Biology and Biochemistry 34: 1309-15. https://doi.org/10.1016/S0038-0717(02)00074-3.
Simpson, M., R. D. McLenaghen, I. Chirino-Valle, and L. M. Condron. 2012. “Effects of Long-Term Grassland Management on the Chemical Nature and Bioavailability of Soil Phosphorus.” Biology and Fertility of Soils 48: 607-11. https://doi.org/10.1007/s00374-011-0661-2.
Spohn, M., A. Ermak, and Y. Kuzyakov. 2013. “Microbial Gross Organic Phosphorus Mineralization Can be Stimulated by Root Exudates-A 33P Isotopic Dilution Study.” Soil Biology and Biochemistry 65: 254-63. https://doi.org/10.1016/j.soilbio.2013.05.028.
Tian, Q. 2023. “Dataset_mowing and P Cycling.” Figshare, Dataset. https://doi.org/10.6084/m9.figshare.22637797.
Tian, Q., N. Liu, W. Bai, L. Li, J. Chen, P. B. Reich, Q. Yu, et al. 2016. “A Novel Soil Manganese Mechanism Drives Plant Species Loss with Increased Nitrogen Deposition in a Temperate Steppe.” Ecology 97: 65-74. https://doi.org/10.1890/15-0917.1.
Tian, Q., P. Lu, P. Ma, H. Zhou, M. Yang, X. Zhai, M. Chen, et al. 2021. “Processes at the Soil-Root Interface Determine the Different Responses of Nutrient Limitation and Metal Toxicity in Forbs and Grasses to Nitrogen Enrichment.” Journal of Ecology 109: 927-38. https://doi.org/10.1111/1365-2745.13519.
Turner, B. L., and P. M. Haygarth. 2005. “Phosphatase Activity in Temperate Pasture Soils: Potential Regulation of Labile Organic Phosphorus Turnover by Phosphodiesterase Activity.” Science of the Total Environment 344: 27-36. https://doi.org/10.1016/j.scitotenv.2005.02.003.
van der Salm, C., W. J. Chardon, G. F. Koopmans, J. C. van Middelkoop, and P. A. Ehlert. 2009. “Phytoextraction of Phosphorus-Enriched Grassland Soils.” Journal of Environmental Quality 38: 751-61. https://doi.org/10.2134/jeq2008.0068.
Vance, E. D., P. C. Brookes, and D. S. Jenkinson. 1987. “An Extraction Method for Measuring Soil Microbial Biomass C.” Soil Biology and Biochemistry 19: 703-7. https://doi.org/10.1016/0038-0717(87)90052-6.
Wang, T. 2000. “Land Use and Sandy Desertification in the North China.” Journal of Desert Research 20: 103-13.
Wang, X., F. Y. Li, Y. Li, X. Song, X. Guo, X. Hou, and T. Baoyin. 2019. “The Shift in the Abundance of Two Stipa Species in Response to Land Use Change Is Associated with their Divergent Reproductive Strategies.” Journal of Plant Ecology 12: 722-9. https://doi.org/10.1093/jpe/rtz012.
Wang, Y., and H. Lambers. 2019. “Root-Released Organic Anions in Response to Low Phosphorus Availability: Recent Progress, Challenges and Future Perspectives.” Plant and Soil 447: 135-56. https://doi.org/10.1007/s11104-019-03972-8.
Wang, Y. P., Y. Huang, L. Augusto, D. S. Goll, J. Helfenstein, and E. Hou. 2022. “Toward a Global Model for Soil Inorganic Phosphorus Dynamics: Dependence of Exchange Kinetics and Soil Bioavailability on Soil Physicochemical Properties.” Global Biogeochemical Cycles 36: e2021GB007061. https://doi.org/10.1029/2021gb007061.
Xu, L., H. Cao, C. Li, C. Wang, N. He, S. Hu, M. Yao, et al. 2022. “The Importance of Rare Versus Abundant phoD-Harboring Subcommunities in Driving Soil Alkaline Phosphatase Activity and Available P Content in Chinese Steppe Ecosystems.” Soil Biology and Biochemistry 164: 108491. https://doi.org/10.1016/j.soilbio.2021.108491.
Yang, H., L. Jiang, L. Li, A. Li, M. Wu, and S. Wan. 2012. “Diversity-Dependent Stability under Mowing and Nutrient Addition: Evidence from a 7-Year Grassland Experiment.” Ecology Letters 15: 619-26. https://doi.org/10.1111/j.1461-0248.2012.01778.x.
Zhang, T., F. Y. Li, Y. Li, C. Shi, H. Wang, L. Wu, Z. Bai, G. Suri, and Z. Wang. 2022. “Disentangling the Effects of Animal Defoliation, Trampling, and Excretion Deposition on Plant Nutrient Resorption in a Semi-Arid Steppe: The Predominant Role of Defoliation.” Agriculture, Ecosystems and Environment 337: 108068. https://doi.org/10.1016/j.agee.2022.108068.

Auteurs

Xiufeng Zhai (X)

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.

Peng Lu (P)

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

Ruifang Zhang (R)

Mountain Area Research Institute, Agricultural University of Hebei, Baoding, China.

Wenming Bai (W)

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

Wen-Hao Zhang (WH)

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.

Ji Chen (J)

Department of Agroecology, Aarhus University, Tjele, Denmark.
Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark.
iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark.

Qiuying Tian (Q)

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals

Classifications MeSH