Increase in Frequency of Myeloid-Derived Suppressor Cells in the Bone Marrow of Myeloproliferative Neoplasm: Potential Implications in Myelofibrosis.
And TGF-β1
Bone-marrow
Fibrosis
Immunosuppression
MDSCs
MPNs
Journal
Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
26
4
2023
pubmed:
24
4
2023
entrez:
24
04
2023
Statut:
ppublish
Résumé
The Philadelphia-negative myeloproliferative neoplasms (MPNs), defined as clonal disorders of the hematopoietic stem cells, are characterized by the proliferation of mature myeloid cells in the bone marrow and a chronic inflammatory status impacting the initiation, progression, and symptomatology of the malignancies. There are three main entities defined as essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), and genetically classified by JAK2
Identifiants
pubmed: 37093433
doi: 10.1007/978-3-031-26163-3_15
doi:
Substances chimiques
Janus Kinase 2
EC 2.7.10.2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
273-290Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Références
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF et al. (2022 Jul) The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 36(7):1703–1719. https://doi.org/10.1038/s41375-022-01613-1 . Epub 2022 Jun 22. PMID: 35732831; PMCID: PMC9252913
Nasillo V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B et al (2021) Inflammatory microenvironment and specific T cells in myeloproliferative neoplasms: immunopathogenesis and novel immunotherapies. Int J Mol Sci 22(4):1906. https://doi.org/10.3390/ijms22041906.PMID:33672997;PMCID:PMC7918142
doi: 10.3390/ijms22041906.PMID:33672997;PMCID:PMC7918142
pubmed: 33672997
pmcid: 7918142
Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L et al. (2014 Oct 16) Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 124(16):2507–13; quiz 2615. https://doi.org/10.1182/blood-2014-05-579136 . Epub 2014 Jul 18. PMID: 25037629; PMCID: PMC4199952
Geyer HL, Dueck AC, Scherber RM, Mesa RA (2015) Impact of inflammation on myeloproliferative neoplasm symptom development. Med Inflamm 2015:284706. https://doi.org/10.1155/2015/284706 . Epub 2015 Oct 11. PMID: 26538823; PMCID: PMC4619953
Mendez Luque LF, Blackmon AL, Ramanathan G, Fleischman AG (2019 Jun) Key role of inflammation in myeloproliferative neoplasms: instigator of disease initiation, progression and symptoms. Curr Hematol Malig Rep 14(3):145–153. https://doi.org/10.1007/s11899-019-00508-w . PMID: 31119475; PMCID: PMC7746200
Wang Y, Zuo X (2019) Cytokines frequently implicated in myeloproliferative neoplasms. Cytokine X 1(1):100005. https://doi.org/10.1016/j.cytox.2019.100005.PMID:33604548;PMCID:PMC7885877
doi: 10.1016/j.cytox.2019.100005.PMID:33604548;PMCID:PMC7885877
pubmed: 33604548
pmcid: 7885877
Bhuria V, Baldauf CK, Schraven B, Fischer T (2022) Thromboinflammation in Myeloproliferative Neoplasms (MPN)-a puzzle still to be solved. Int J Mol Sci 23(6):3206. https://doi.org/10.3390/ijms23063206.PMID:35328626;PMCID:PMC8954909
doi: 10.3390/ijms23063206.PMID:35328626;PMCID:PMC8954909
pubmed: 35328626
pmcid: 8954909
Hermouet S, Bigot-Corbel E, Gardie B (2015) Pathogenesis of myeloproliferative neoplasms: role and mechanisms of chronic inflammation. Med Inflamm 2015:145293. https://doi.org/10.1155/2015/145293 . Epub 2015 Oct 11. PMID: 26538820; PMCID: PMC4619950
Zahr AA, Salama ME, Carreau N, Tremblay D, Verstovsek S, Mesa R, Hoffman R, Mascarenhas J (2016) Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies. Haematologica 101(6):660–671. https://doi.org/10.3324/haematol.2015.141283.PMID:27252511;PMCID:PMC5013940
doi: 10.3324/haematol.2015.141283.PMID:27252511;PMCID:PMC5013940
pubmed: 27252511
pmcid: 5013940
Vukotić M, Kapor S, Dragojević T, Đikić D, Mitrović Ajtić O, Diklić M et al. (2022 Mar) Inhibition of proinflammatory signaling impairs fibrosis of bone marrow mesenchymal stromal cells in myeloproliferative neoplasms. Exp Mol Med 54(3):273–284. https://doi.org/10.1038/s12276-022-00742-y . Epub 2022 Mar 14. PMID: 35288649; PMCID: PMC8980093
Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4):387–397. https://doi.org/10.1016/j.ccr.2005.03.023 . PMID: 15837627
doi: 10.1016/j.ccr.2005.03.023
pubmed: 15837627
Wolf A, Eulenfeld R, Gäbler K, Rolvering C, Haan S, Behrmann I et al. (2013 Jul 1) JAK2-V617F-induced MAPK activity is regulated by PI3K and acts synergistically with PI3K on the proliferation of JAK2-V617F-positive cells. JAKSTAT. 2(3):e24574. https://doi.org/10.4161/jkst.24574 . Epub 2013 Apr 8. PMID: 24069558; PMCID: PMC3772110
Hu X, Li J, Fu M, Zhao X, Wang W (2021) The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 6(1):402. https://doi.org/10.1038/s41392-021-00791-1.PMID:34824210;PMCID:PMC8617206
doi: 10.1038/s41392-021-00791-1.PMID:34824210;PMCID:PMC8617206
pubmed: 34824210
pmcid: 8617206
Edahiro Y, Araki M, Komatsu N (2020 Aug) Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin. Cancer Sci 111(8):2682–2688. https://doi.org/10.1111/cas.14503 . Epub 2020 Jun 27. PMID: 32462673; PMCID: PMC7419020
Masselli E, Pozzi G, Gobbi G, Merighi S, Gessi S, Vitale M, Carubbi C (2020) Cytokine profiling in myeloproliferative neoplasms: overview on phenotype correlation, outcome prediction, and role of genetic variants. Cells 9(9):2136. https://doi.org/10.3390/cells9092136.PMID:32967342;PMCID:PMC7564952
doi: 10.3390/cells9092136.PMID:32967342;PMCID:PMC7564952
pubmed: 32967342
pmcid: 7564952
Mojsilovic S, Mojsilovic SS, Bjelica S, Santibanez JF (2022 Jan) Transforming growth factor-beta1 and myeloid-derived suppressor cells: A cancerous partnership. Dev Dyn 251(1):105-124. https://doi.org/10.1002/dvdy.339 . Epub 2021 Apr 8. PMID: 33797140
Wang S, Tan Q, Hou Y, Dou H (2021) Emerging roles of myeloid-derived suppressor cells in diabetes. Front Pharmacol 16(12):798320. https://doi.org/10.3389/fphar.2021.798320.PMID:34975496;PMCID:PMC8716856
doi: 10.3389/fphar.2021.798320.PMID:34975496;PMCID:PMC8716856
Medina E, Hartl D (2018) Myeloid-Derived Suppressor Cells in Infection: A General Overview. J Innate Immun 10(5–6):407–413. https://doi.org/10.1159/000489830 . Epub 2018 Jun 26. PMID: 29945134; PMCID: PMC6784037
Veglia F, Perego M, Gabrilovich D (2018 Feb) Myeloid-derived suppressor cells coming of age. Nat Immunol 19(2):108–119. https://doi.org/10.1038/s41590-017-0022-x . Epub 2018 Jan 18. PMID: 29348500; PMCID: PMC5854158
Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 6(7):12150. https://doi.org/10.1038/ncomms12150.PMID:27381735;PMCID:PMC4935811
doi: 10.1038/ncomms12150.PMID:27381735;PMCID:PMC4935811
Bizymi N, Bjelica S, Kittang AO, Mojsilovic S, Velegraki M, Pontikoglou C et al (2019) Myeloid-derived suppressor cells in hematologic diseases: promising biomarkers and treatment targets. Hemasphere 3(1):e168. https://doi.org/10.1097/HS9.0000000000000168.PMID:31723807;PMCID:PMC6745940
doi: 10.1097/HS9.0000000000000168.PMID:31723807;PMCID:PMC6745940
pubmed: 31723807
pmcid: 6745940
Veglia F, Sanseviero E, Gabrilovich DI (2021 Aug) Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol 21(8):485–498. https://doi.org/10.1038/s41577-020-00490-y . Epub 2021 Feb 1. PMID: 33526920; PMCID: PMC7849958
Gondois-Rey F, Paul M, Alcaraz F, Bourass S, Monnier J, Malissen N et al (2021) Identification of an immature subset of PMN-MDSC correlated to response to checkpoint inhibitor therapy in patients with metastatic melanoma. Cancers (Basel) 13(6):1362. https://doi.org/10.3390/cancers13061362.PMID:33802925;PMCID:PMC8002694
doi: 10.3390/cancers13061362.PMID:33802925;PMCID:PMC8002694
pubmed: 33802925
Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moreno C, Scumpia PO, Laface DM et al. (2011 Mar–Apr) A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol Med 17(3–4):281–92. https://doi.org/10.2119/molmed.2010.00178 . Epub 2010 Nov 12. PMID: 21085745; PMCID: PMC3060988.
Sica A, Guarneri V, Gennari A (2019) Myelopoiesis, metabolism and therapy: a crucial crossroads in cancer progression. Cell Stress 3(9):284–294. https://doi.org/10.15698/cst2019.09.197.PMID:31535085;PMCID:PMC6732213
doi: 10.15698/cst2019.09.197.PMID:31535085;PMCID:PMC6732213
pubmed: 31535085
pmcid: 6732213
Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016 Mar) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220. https://doi.org/10.1016/j.it.2016.01.004 . Epub 2016 Feb 6. PMID: 26858199; PMCID: PMC4775398
Gabrilovich DI (2017) Myeloid-derived suppressor cells. Cancer Immunol Res 5(1):3–8. https://doi.org/10.1158/2326-6066.CIR-16-0297.PMID:28052991;PMCID:PMC5426480
doi: 10.1158/2326-6066.CIR-16-0297.PMID:28052991;PMCID:PMC5426480
pubmed: 28052991
pmcid: 5426480
Kalathil SG, Thanavala Y (2021 Mar) Importance of myeloid derived suppressor cells in cancer from a biomarker perspective. Cell Immunol 361:104280. https://doi.org/10.1016/j.cellimm.2020.104280 . Epub 2020 Dec 31. PMID: 33445053; PMCID: PMC9204650
Coşkun Bİ (2021) The osteocyte as a director of bone metabolism. Arch Rheumatol. 36(4):617–619. https://doi.org/10.46497/ArchRheumatol.2021.8632.PMID:35382360;PMCID:PMC8957769
doi: 10.46497/ArchRheumatol.2021.8632.PMID:35382360;PMCID:PMC8957769
Zanetti C, Krause DS (2020 Sep) Caught in the net: the extracellular matrix of the bone marrow in normal hematopoiesis and leukemia. Exp Hematol 89:13–25. https://doi.org/10.1016/j.exphem.2020.07.010 . Epub 2020 Aug 2. PMID: 32755619
Spampinato M, Giallongo C, Romano A, Longhitano L, La Spina E, Avola R et al (2021) Focus on osteosclerotic progression in primary myelofibrosis. Biomolecules 11(1):122. https://doi.org/10.3390/biom11010122.PMID:33477816;PMCID:PMC7832894
doi: 10.3390/biom11010122.PMID:33477816;PMCID:PMC7832894
pubmed: 33477816
pmcid: 7832894
Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A (2005) European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica 90(8):1128–1132 PMID: 16079113
pubmed: 16079113
Yao JC, Oetjen KA, Wang T, Xu H, Abou-Ezzi G, Krambs JR, Uttarwar S, Duncavage EJ, Link DC (2022) TGF-β signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche. J Clin Invest 132(11):e154092. https://doi.org/10.1172/JCI154092.PMID:35439167;PMCID:PMC9151699
doi: 10.1172/JCI154092.PMID:35439167;PMCID:PMC9151699
pubmed: 35439167
pmcid: 9151699
Verstovsek S, Manshouri T, Pilling D, Bueso-Ramos CE, Newberry KJ, Prijic S et al. (2016 Aug 22) Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis. J Exp Med 213(9):1723–40. https://doi.org/10.1084/jem.20160283 . Epub 2016 Aug 1. PMID: 27481130; PMCID: PMC4995084
Casacuberta-Serra S, Parés M, Golbano A, Coves E, Espejo C, Barquinero J (2017 Jul) Myeloid-derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes. Immunol Cell Biol 95(6):538–548. https://doi.org/10.1038/icb.2017.4 . Epub 2017 Jan 21. PMID: 28108746
Wang Y, Ma Y, Fang Y, Wu S, Liu L, Fu D, Shen X (2012) Regulatory T cell: a protection for tumour cells. J Cell Mol Med 16(3):425–436. https://doi.org/10.1111/j.1582-4934.2011.01437.x.PMID:21895966;PMCID:PMC3822920
doi: 10.1111/j.1582-4934.2011.01437.x.PMID:21895966;PMCID:PMC3822920
pubmed: 21895966
pmcid: 3822920
Wang JC, Kundra A, Andrei M, Baptiste S, Chen C, Wong C, Sindhu H (2016) Myeloid-derived suppressor cells in patients with myeloproliferative neoplasm. Leuk Res 43:39–43. https://doi.org/10.1016/j.leukres.2016.02.004 . Epub 2016 Feb 16 PMID: 26943702
doi: 10.1016/j.leukres.2016.02.004
pubmed: 26943702
Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P et al (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15(6):2148–2157. https://doi.org/10.1158/1078-0432.CCR-08-1332 . Epub 2009 Mar 10 PMID: 19276286
doi: 10.1158/1078-0432.CCR-08-1332
pubmed: 19276286
Kapor S, Vukotić M, Subotički T, Đikić D, Mitrović Ajtić O, Radojković M et al (2021) Hydroxyurea induces bone marrow mesenchymal stromal cells senescence and modifies cell functionality in vitro. J Pers Med 11(11):1048. https://doi.org/10.3390/jpm11111048.PMID:34834400;PMCID:PMC8619969
doi: 10.3390/jpm11111048.PMID:34834400;PMCID:PMC8619969
pubmed: 34834400
pmcid: 8619969
Barbui T, Thiele J, Gisslinger H, Kvasnicka HM, Vannucchi AM, Guglielmelli P et al (2018) The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J 8(2):15. https://doi.org/10.1038/s41408-018-0054-y.PMID:29426921;PMCID:PMC5807384
doi: 10.1038/s41408-018-0054-y.PMID:29426921;PMCID:PMC5807384
pubmed: 29426921
pmcid: 5807384
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405. https://doi.org/10.1182/blood-2016-03-643544 . Epub 2016 Apr 11 PMID: 27069254
doi: 10.1182/blood-2016-03-643544
pubmed: 27069254
Nazha A, Khoury JD, Rampal RK, Daver N (2015 Oct) Fibrogenesis in primary myelofibrosis: diagnostic, clinical, and therapeutic implications. Oncologist 20(10):1154–1160. https://doi.org/10.1634/theoncologist.2015-0094 . Epub 2015 Aug 24. PMID: 26304912; PMCID: PMC4591957
Kreipe H, Büsche G, Bock O, Hussein K (2012) Myelofibrosis: molecular and cell biological aspects. Fibrogenesis Tissue Repair 5(Suppl 1):S21. https://doi.org/10.1186/1755-1536-5-S1-S21.PMID:23259436;PMCID:PMC3368793
doi: 10.1186/1755-1536-5-S1-S21.PMID:23259436;PMCID:PMC3368793
pubmed: 23259436
pmcid: 3368793
Wu Y, Yi M, Niu M, Mei Q, Wu K (2022) Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy. Mol Cancer 21(1):184. https://doi.org/10.1186/s12943-022-01657-y.PMID:36163047;PMCID:PMC9513992
doi: 10.1186/s12943-022-01657-y.PMID:36163047;PMCID:PMC9513992
pubmed: 36163047
pmcid: 9513992
Gunes EG, Rosen ST, Querfeld C (2020) The role of myeloid-derived suppressor cells in hematologic malignancies. Curr Opin Oncol 32(5):518–526. https://doi.org/10.1097/CCO.0000000000000662.PMID:32675593;PMCID:PMC7735379
doi: 10.1097/CCO.0000000000000662.PMID:32675593;PMCID:PMC7735379
pubmed: 32675593
pmcid: 7735379
Barosi G (2014) An immune dysregulation in MPN. Curr Hematol Malig Rep 9(4):331–339. https://doi.org/10.1007/s11899-014-0227-0 . PMID: 25139710
doi: 10.1007/s11899-014-0227-0
pubmed: 25139710
Tumino N, Di Pace AL, Besi F, Quatrini L, Vacca P, Moretta L (2021) Interaction between MDSC and NK cells in solid and hematological malignancies: impact on HSCT. Front Immunol 12(12):638841. https://doi.org/10.3389/fimmu.2021.638841.PMID:33679798;PMCID:PMC7928402
doi: 10.3389/fimmu.2021.638841.PMID:33679798;PMCID:PMC7928402
pubmed: 33679798
pmcid: 7928402
García-Gutiérrez V, Hernández-Boluda JC (2019) Tyrosine kinase inhibitors available for chronic myeloid leukemia: efficacy and safety. Front Oncol 3(9):603. https://doi.org/10.3389/fonc.2019.00603.PMID:31334123;PMCID:PMC6617580
doi: 10.3389/fonc.2019.00603.PMID:31334123;PMCID:PMC6617580
Christiansson L, Söderlund S, Mangsbo S, Hjorth-Hansen H, Höglund M, Markevärn B et al (2015) The tyrosine kinase inhibitors imatinib and dasatinib reduce myeloid suppressor cells and release effector lymphocyte responses. Mol Cancer Ther 14(5):1181–1191. https://doi.org/10.1158/1535-7163.MCT-14-0849 . Epub 2015 Mar 11 PMID: 25761894
doi: 10.1158/1535-7163.MCT-14-0849
pubmed: 25761894
Loscocco GG, Vannucchi AM (2022) Role of JAK inhibitors in myeloproliferative neoplasms: current point of view and perspectives. Int J Hematol 115(5):626–644. https://doi.org/10.1007/s12185-022-03335-7 . Epub 2022 Mar 29 PMID: 35352288
doi: 10.1007/s12185-022-03335-7
pubmed: 35352288
Cuthbert D, Stein BL (2019) Therapy-associated leukemic transformation in myeloproliferative neoplasms—What do we know? Best Pract Res Clin Haematol 32(1):65–73. https://doi.org/10.1016/j.beha.2019.02.004 . Epub 2019 Feb 8 PMID: 30927977
doi: 10.1016/j.beha.2019.02.004
pubmed: 30927977
Kapor S, Santibanez JF (2021) Myeloid-derived suppressor cells and mesenchymal stem/stromal cells in myeloid malignancies. J Clin Med 10(13):2788. https://doi.org/10.3390/jcm10132788.PMID:34202907;PMCID:PMC8268878
doi: 10.3390/jcm10132788.PMID:34202907;PMCID:PMC8268878
pubmed: 34202907
pmcid: 8268878
Hyun SY, Na EJ, Jang JE, Chung H, Kim SJ, Kim JS, Kong JH, Shim KY, Lee JI, Min YH, Cheong JW (2020 Oct) Immunosuppressive role of CD11b+ CD33+ HLA-DR- myeloid-derived suppressor cells-like blast subpopulation in acute myeloid leukemia. Cancer Med 9(19):7007–7017. https://doi.org/10.1002/cam4.3360 . Epub 2020 Aug 11. PMID: 32780544; PMCID: PMC7541151
Stubbins RJ, Platzbecker U, Karsan A (2022) Inflammation and myeloid malignancy: quenching the flame. Blood 140(10):1067–1074. https://doi.org/10.1182/blood.2021015162 . PMID: 35468199
doi: 10.1182/blood.2021015162
pubmed: 35468199
Kleppe M, Kwak M, Koppikar P, Riester M, Keller M, Bastian L et al. (2015 Mar) JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov 5(3):316–31. https://doi.org/10.1158/2159-8290.CD-14-0736 . Epub 2015 Jan 8. PMID: 25572172; PMCID: PMC4355105
Giallongo C, Parrinello N, Brundo MV, Raccuia SA, Di Rosa M, La Cava P, Tibullo D (2015) Myeloid derived suppressor cells in chronic myeloid leukemia. Front Oncol 15(5):107. https://doi.org/10.3389/fonc.2015.00107.PMID:26029664;PMCID:PMC4432672
doi: 10.3389/fonc.2015.00107.PMID:26029664;PMCID:PMC4432672
Sabattini E, Pizzi M, Agostinelli C, Bertuzzi C, Sagramoso Sacchetti CA, Palandri F, Gianelli U (2021) Progression in Ph-chromosome-negative myeloproliferative neoplasms: an overview on pathologic issues and molecular determinants. Cancers (Basel) 13(21):5531. https://doi.org/10.3390/cancers13215531.PMID:34771693;PMCID:PMC8583143
doi: 10.3390/cancers13215531.PMID:34771693;PMCID:PMC8583143
pubmed: 34771693
Thiele J, Kvasnicka HM, Orazi A, Tefferi A, Birgegard G, Barbui T et al. (2017) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC Geneva, Switzerland, pp 39–50
Spivak JL (2017) Myeloproliferative neoplasms. N Engl J Med 377(9):895–896. https://doi.org/10.1056/NEJMc1708485 . PMID: 28854086
doi: 10.1056/NEJMc1708485
pubmed: 28854086
Mannelli F (2021) Acute myeloid leukemia evolving from myeloproliferative neoplasms: many sides of a challenging disease. J Clin Med 10(3):436. https://doi.org/10.3390/jcm10030436.PMID:33498691;PMCID:PMC7866045
doi: 10.3390/jcm10030436.PMID:33498691;PMCID:PMC7866045
pubmed: 33498691
pmcid: 7866045
Chagraoui H, Wendling F, Vainchenker W (2006) Pathogenesis of myelofibrosis with myeloid metaplasia: insight from mouse models. Best Pract Res Clin Haematol 19(3):399–412. https://doi.org/10.1016/j.beha.2005.07.002 . PMID: 16781480
doi: 10.1016/j.beha.2005.07.002
pubmed: 16781480
Palumbo GA, Parrinello NL, Giallongo C, D’Amico E, Zanghì A, Puglisi F et al (2019) Monocytic myeloid derived suppressor cells in hematological malignancies. Int J Mol Sci 20(21):5459. https://doi.org/10.3390/ijms20215459.PMID:31683978;PMCID:PMC6862591
doi: 10.3390/ijms20215459.PMID:31683978;PMCID:PMC6862591
pubmed: 31683978
pmcid: 6862591
Yao JC, Oetjen KA, Wang T, Xu H, Abou-Ezzi G, Krambs JR et al (2022) TGF-β signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche. J Clin Invest 132(11):e154092. https://doi.org/10.1172/JCI154092.PMID:35439167;PMCID:PMC9151699
doi: 10.1172/JCI154092.PMID:35439167;PMCID:PMC9151699
pubmed: 35439167
pmcid: 9151699
Agarwal A, Morrone K, Bartenstein M, Zhao ZJ, Verma A, Goel S (2016) Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β. Stem Cell Investig 26(3):5. https://doi.org/10.3978/j.issn.2306-9759.2016.02.03.PMID:27358897;PMCID:PMC4923632
doi: 10.3978/j.issn.2306-9759.2016.02.03.PMID:27358897;PMCID:PMC4923632
Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12(6):325–338. https://doi.org/10.1038/nrneph.2016.48 . Epub 2016 Apr 25 PMID: 27108839
doi: 10.1038/nrneph.2016.48
pubmed: 27108839
Dong M, Blobe GC (2006 Jun 15) Role of transforming growth factor-beta in hematologic malignancies. Blood 107(12):4589–96. https://doi.org/10.1182/blood-2005-10-4169 . Epub 2006 Feb 16. PMID: 16484590; PMCID: PMC1895802
Deng X, Li X, Guo X, Lu Y, Xie Y, Huang X et al. (2022 Jun) Myeloid-derived suppressor cells promote tumor growth and sorafenib resistance by inducing FGF1 upregulation and fibrosis. Neoplasia 28:100788. https://doi.org/10.1016/j.neo.2022.100788 . Epub 2022 Apr 1. PMID: 35378464; PMCID: PMC8980488
Qiu Y, Cao Y, Tu G, Li J, Su Y, Fang F et al (2021) Myeloid-derived suppressor cells alleviate renal fibrosis progression via regulation of CCL5-CCR5 axis. Front Immunol 10(12):698894. https://doi.org/10.3389/fimmu.2021.698894
doi: 10.3389/fimmu.2021.698894