Neutralization of zoonotic retroviruses by human antibodies: Genotype-specific epitopes within the receptor-binding domain from simian foamy virus.
Journal
PLoS pathogens
ISSN: 1553-7374
Titre abrégé: PLoS Pathog
Pays: United States
ID NLM: 101238921
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
08
02
2023
accepted:
31
03
2023
revised:
04
05
2023
medline:
8
5
2023
pubmed:
24
4
2023
entrez:
24
04
2023
Statut:
epublish
Résumé
Infection with viruses of animal origin pose a significant threat to human populations. Simian foamy viruses (SFVs) are frequently transmitted to humans, in which they establish a life-long infection, with the persistence of replication-competent virus. However, zoonotic SFVs do not induce severe disease nor are they transmitted between humans. Thus, SFVs represent a model of zoonotic retroviruses that lead to a chronic infection successfully controlled by the human immune system. We previously showed that infected humans develop potent neutralizing antibodies (nAbs). Within the viral envelope (Env), the surface protein (SU) carries a variable region that defines two genotypes, overlaps with the receptor binding domain (RBD), and is the exclusive target of nAbs. However, its antigenic determinants are not understood. Here, we characterized nAbs present in plasma samples from SFV-infected individuals living in Central Africa. Neutralization assays were carried out in the presence of recombinant SU that compete with SU at the surface of viral vector particles. We defined the regions targeted by the nAbs using mutant SU proteins modified at the glycosylation sites, RBD functional subregions, and genotype-specific sequences that present properties of B-cell epitopes. We observed that nAbs target conformational epitopes. We identified three major epitopic regions: the loops at the apex of the RBD, which likely mediate interactions between Env protomers to form Env trimers, a loop located in the vicinity of the heparan binding site, and a region proximal to the highly conserved glycosylation site N8. We provide information on how nAbs specific for each of the two viral genotypes target different epitopes. Two common immune escape mechanisms, sequence variation and glycan shielding, were not observed. We propose a model according to which the neutralization mechanisms rely on the nAbs to block the Env conformational change and/or interfere with binding to susceptible cells. As the SFV RBD is structurally different from known retroviral RBDs, our data provide fundamental knowledge on the structural basis for the inhibition of viruses by nAbs. Trial registration: The study was registered at www.clinicaltrials.gov: https://clinicaltrials.gov/ct2/show/NCT03225794/.
Identifiants
pubmed: 37093892
doi: 10.1371/journal.ppat.1011339
pii: PPATHOGENS-D-23-00240
pmc: PMC10159361
doi:
Substances chimiques
Antibodies, Neutralizing
0
Epitopes, B-Lymphocyte
0
HIV Antibodies
0
Banques de données
ClinicalTrials.gov
['NCT03225794']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1011339Informations de copyright
Copyright: © 2023 Dynesen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
J Virol. 2015 Dec;89(24):12480-91
pubmed: 26446599
Nat Microbiol. 2019 May;4(5):734-747
pubmed: 30886356
Virology. 1999 Mar 15;255(2):228-36
pubmed: 10069948
J Virol. 2002 Apr;76(8):3774-83
pubmed: 11907217
Methods Mol Biol. 2016;1350:349-58
pubmed: 26820867
PLoS Pathog. 2022 May 23;18(5):e1010470
pubmed: 35605011
Nature. 2005 Mar 17;434(7031):376-80
pubmed: 15772660
J Virol. 2003 Apr;77(7):3993-4003
pubmed: 12634359
Virology. 2016 Sep;496:219-226
pubmed: 27348053
Retrovirology. 2017 Dec 2;14(1):55
pubmed: 29197389
Nat Commun. 2020 Oct 21;11(1):5337
pubmed: 33087721
Cell. 2019 May 16;177(5):1136-1152.e18
pubmed: 31100268
Viruses. 2013 Sep 25;5(10):2349-74
pubmed: 24072062
PLoS Pathog. 2011 Oct;7(10):e1002306
pubmed: 22046126
J Virol. 2005 Jun;79(12):7664-72
pubmed: 15919919
PLoS Pathog. 2010 Feb 19;6(2):e1000762
pubmed: 20174556
Cell. 2022 Mar 17;185(6):995-1007.e18
pubmed: 35303429
EMBO J. 2021 Oct 18;40(20):e106765
pubmed: 34510494
Immunome Res. 2006 Apr 24;2:2
pubmed: 16635264
J Gen Virol. 1999 Aug;80 ( Pt 8):2003-2009
pubmed: 10466797
Virology. 1998 Aug 1;247(2):144-51
pubmed: 9705907
J Infect Dis. 2018 Jun 5;218(1):144-151
pubmed: 29608711
Cell. 2022 Feb 17;185(4):641-653.e17
pubmed: 35123651
J Virol. 2006 Aug;80(16):8158-67
pubmed: 16873272
Virus Evol. 2019 Oct 16;5(2):vez032
pubmed: 31636999
J Virol. 2013 Mar;87(6):3163-76
pubmed: 23283957
J Virol. 2012 Dec;86(24):13350-9
pubmed: 23015714
J Virol. 2022 Apr 13;96(7):e0006322
pubmed: 35319227
Nat Commun. 2023 Mar 06;14(1):1262
pubmed: 36878926
Nucleic Acids Res. 1988 Feb 11;16(3):1043-61
pubmed: 3125519
PLoS Pathog. 2016 Jul 11;12(7):e1005721
pubmed: 27399201
J Virol. 2019 May 15;93(11):
pubmed: 30894477
Nature. 2011 Nov 23;480(7377):336-43
pubmed: 22113616
Virology. 2003 Sep 15;314(1):243-52
pubmed: 14517077
J Virol. 2013 Aug;87(15):8792-7
pubmed: 23698303
Virology. 2020 Feb;541:25-31
pubmed: 31826843
PLoS Pathog. 2015 Aug 12;11(8):e1005110
pubmed: 26267277
J Virol. 2005 Oct;79(20):13186-9
pubmed: 16189020
Structure. 2019 Jan 2;27(1):196-206.e6
pubmed: 30471922
Arch Virol. 2017 Apr;162(4):1141-1144
pubmed: 28040837
PLoS One. 2013 May 07;8(5):e62216
pubmed: 23667458
J Gen Virol. 1990 May;71 ( Pt 5):1237-41
pubmed: 2161055
PLoS Pathog. 2018 Oct 8;14(10):e1007293
pubmed: 30296302
J Virol. 2014 Nov;88(22):13429-35
pubmed: 25210185
J Gen Virol. 1994 Oct;75 ( Pt 10):2635-44
pubmed: 7931149
J Infect Dis. 2020 Apr 27;221(10):1724-1733
pubmed: 31822908
Sci Adv. 2021 Jul 28;7(31):
pubmed: 34321200
J Virol. 2010 Oct;84(20):10510-21
pubmed: 20686044
Transfusion. 2010 Jan;50(1):200-7
pubmed: 19719470
Clin Infect Dis. 2015 Jun 1;60(11):1667-76
pubmed: 25722199
PLoS Pathog. 2014 Jul 24;10(7):e1004271
pubmed: 25058619
BMC Bioinformatics. 2008 Dec 02;9:514
pubmed: 19055730