Hidden chemical order in disordered Ba


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
24 Apr 2023
Historique:
received: 24 12 2022
accepted: 30 03 2023
medline: 25 4 2023
pubmed: 25 4 2023
entrez: 24 04 2023
Statut: epublish

Résumé

The chemical order and disorder of solids have a decisive influence on the material properties. There are numerous materials exhibiting chemical order/disorder of atoms with similar X-ray atomic scattering factors and similar neutron scattering lengths. It is difficult to investigate such order/disorder hidden in the data obtained from conventional diffraction methods. Herein, we quantitatively determined the Mo/Nb order in the high ion conductor Ba

Identifiants

pubmed: 37095089
doi: 10.1038/s41467-023-37802-4
pii: 10.1038/s41467-023-37802-4
pmc: PMC10126145
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2337

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2023. The Author(s).

Références

May, S. J. et al. Enhanced ordering temperatures in antiferromagnetic manganite superlattices. Nat. Mater. 8, 892–897 (2009).
pubmed: 19838186
Keen, D. A. & Goodwin, A. L. The crystallography of correlated disorder. Nature 521, 303–309 (2015).
pubmed: 25993960
Hogrefe, K. et al. Opening diffusion pathways through site disorder: the interplay of local structure and ion dynamics in the solid electrolyte Li
pubmed: 35057616 pmcid: 8815078
Coduri, M., Karlsson, M. & Malavasi, L. Structure–property correlation in oxide-ion and proton conductors for clean energy applications: recent experimental and computational advancements. J. Mater. Chem. A 10, 5082–5110 (2022).
Takeiri, F. et al. Hydride-ion-conducting K
pubmed: 35027719
Yashima, M. et al. Direct evidence for two-dimensional oxide-ion diffusion in the hexagonal perovskite-related oxide Ba
Yasui, Y., Tsujiguchi, T., Sakuda, Y., Hester, J. R. & Yashima, M. Oxide-ion occupational disorder, diffusion path, and conductivity in hexagonal perovskite derivatives Ba
Yashima, M., Sirikanda, N. & Ishihara, T. Crystal structure, diffusion path, and oxygen permeability of a Pr
pubmed: 20121092
Ji, H. et al. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries. Nat. Commun. 10, 592 (2019).
pubmed: 30723202 pmcid: 6363792
Shamblin, J. et al. Probing disorder in isometric pyrochlore and related complex oxides. Nat. Mater. 15, 507–511 (2016).
pubmed: 26928636
Fop, S. et al. High oxide ion and proton conductivity in a disordered hexagonal perovskite. Nat. Mater. 19, 752–757 (2020).
pubmed: 32123332
Yamashita, H. et al. Chemical pressure-induced anion order-disorder transition in LnHO enabled by hydride size flexibility. J. Am. Chem. Soc. 140, 11170–11173 (2018).
pubmed: 30126273
Ji, K., Solana-Madruga, E., Patino, M. A., Shimakawa, Y. & Attfield, J. P. A new cation-ordered structure type with multiple thermal redistributions in Co
Hayashida, T. et al. Visualization of ferroaxial domains in an order-disorder type ferroaxial crystal. Nat. Commun. 11, 1–8 (2020).
Szczuka, C. et al. Forced disorder in the solid solution Li
pubmed: 36040461 pmcid: 9479069
Roychowdhury, S. et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe
pubmed: 33574210
Attfield, J. P. Determination of valence and cation distributions by resonant powder X-ray diffraction. Nature 343, 46–49 (1990).
Wulf, B. R. Experimental distinction of elements with similar atomic number using anomalous dispersion (8 Synthesis): an application of synchrotron radiation in crystal structure analysis. Acta Crystallogr. Sect. A Found. Crystallogr. 46, 681–688 (1990).
Christensen, M., Lock, N., Overgaard, J. & Iversen, B. B. Crystal structures of thermoelectric n- and p-type Ba
pubmed: 17147375
Basbus, J. F., Caneiro, A., Suescun, L., Lamas, D. G. & Mogni, L. V. Anomalous X-ray diffraction study of Pr-substituted BaCeO
Okube, M. et al. Site occupancy of Fe
pubmed: 30407179
Ashbrook, S. E. & Sneddon, S. New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei. J. Am. Chem. Soc. 136, 15440–15456 (2014).
pubmed: 25296129
Tansho, M. et al. Different local structures of Mo and Nb polyhedra in the oxide-ion-conducting hexagonal perovskite-related oxide Ba
Li, C. et al. Evolution of structure in the incommensurate modulated LaNb
Holzinger, J., Beato, P., Lundegaard, L. F. & Skibsted, J. Distribution of aluminum over the tetrahedral sites in ZSM-5 zeolites and their evolution after steam treatment. J. Phys. Chem. C. 122, 15595–15613 (2018).
Hanna, J. V. et al. A
pubmed: 20140916
Papulovskiy, E., Shubin, A. A., Terskikh, V. V., Pickard, C. J. & Lapina, O. B. Theoretical and experimental insights into applicability of solid-state
pubmed: 23450163
Bonhomme, C. et al. First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist’s point of view. Chem. Rev. 112, 5733–5779 (2012).
pubmed: 23113537
Cuny, J. et al. Density functional theory calculations of
pubmed: 19937665
Iijima, T., Yamase, T., Tansho, M., Shimizu, T. & Nishimura, K. Electron localization of polyoxomolybdates with ε-Keggin structure studied by solid-state
pubmed: 24650319
Yang, X. et al. Cooperative mechanisms of oxygen vacancy stabilization and migration in the isolated tetrahedral anion Scheelite structure. Nat. Commun. 9, 4484 (2018).
pubmed: 30367043 pmcid: 6203716
Brouwer, D. H. & Enright, G. D. Probing local structure in zeolite frameworks: ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite
pubmed: 18281985
Bryce, D. L., Bultz, E. B. & Aebi, D. Calcium-43 chemical shift tensors as probes of calcium binding environments. Insight into the structure of the vaterite CaCO
pubmed: 18576634
Fop, S., Dawson, J. A., Fortes, A. D., Ritter, C. & McLaughlin, A. C. Hydration and ionic conduction mechanisms of hexagonal perovskite derivatives. Chem. Mater. 33, 4651–4660 (2021).
Fop, S. Solid oxide proton conductors beyond perovskites. J. Mater. Chem. A 9, 18836–18856 (2021).
Yashima, M. et al. High oxide-ion conductivity through the interstitial oxygen site in Ba
pubmed: 33495469 pmcid: 7835212
Murakami, T. et al. High oxide‐ion conductivity in a hexagonal perovskite‐related oxide Ba
Suzuki, Y. et al. Simultaneous reduction of proton conductivity and enhancement of oxide-ion conductivity by aliovalent doping in Ba
pubmed: 35504293
Sakuda, Y., Hester, J. R. & Yashima, M. Improved oxide-ion and lower proton conduction of hexagonal perovskite-related oxides based on Ba
Zhang, W. & Yashima, M. Recent developments in oxide ion conductors: focusing on Dion–Jacobson phases. Chem. Commun. 59, 134–152 (2023).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 59, 1758–1775 (1999).
Wilkinson, A. P. et al. Preparation, transport properties, and structure analysis by resonant X-ray scattering of the type I clathrate Cs
Fop, S. et al. Oxide ion conductivity in the hexagonal perovskite derivative Ba
pubmed: 27976879
Fop, S., McCombie, K. S., Wildman, E. J., Skakle, J. M. S. & Mclaughlin, A. C. Hexagonal perovskite derivatives: a new direction in the design of oxide ion conducting materials. Chem. Commun. 55, 2127–2137 (2019).
Martineau, C. et al. SMARTER crystallography of the fluorinated inorganic–organic compound Zn
pubmed: 22488212
Dawson, D. M., Macfarlane, L. E., Amri, M., Walton, R. I. & Ashbrook, S. E. Thermal dehydrofluorination of GaPO-34 revealed by NMR crystallography. J. Phys. Chem. C. 125, 2537–2545 (2021).
Waterstrat, R. M., Kuentzler, R. & Muller, J. Structural instabilities and superconductivity in quasi-binary Mn
Welzmiller, S., Urban, P., Fahrnbauer, F., Erra, L. & Oeckler, O. Determination of the distribution of elements with similar electron counts: a practical guide for resonant X-ray scattering. J. Appl. Crystallogr. 46, 769–778 (2013).
Hayashi, K. & Korecki, P. X-ray fluorescence holography: principles, apparatus, and applications. J. Phys. Soc. Jpn. 87, 1–11 (2018).
Peet, J. R. et al. Direct observation of oxide ion dynamics in La
Chen, H., Wong, L. L. & Adams, S. SoftBV – a software tool for screening the materials genome of inorganic fast ion conductors. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 75, 18–33 (2019).
Wong, L. L. et al. Bond valence pathway analyzer—an automatic rapid screening tool for fast ion conductors within softBV. Chem. Mater. 33, 625–641 (2021).
Kawaguchi, S. et al. High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev. Sci. Instrum. 88, 085111 (2017).
pubmed: 28863664
Osaka, K. et al. Versatile high-throughput diffractometer for industrial use at BL19B2 in SPring-8. in. AIP Conf. Proc. 2054, 10001 (2019).
Rodriguez-Carvajal, J. Nouveaux développements de FullProf Analyse de la microstructure et utilisation du recuit simulé pour la résolution de structures. Comm. Powder Diffr. (IUCr), Newsl. 26, 12–19 (2001).
Izumi, F. & Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15–20 (2007).
Cross, J. & Newville, M. Inclusion of local structure effects in theoretical X-ray resonant scattering amplitudes using ab initio X-ray-absorption spectra calculations. Phys. Rev. B Condens. Matter Mater. Phys. 58, 11215–11225 (1998).
Cromer, D. T. & Liberman, D. Relativistic calculation of anomalous scattering factors for X rays. J. Chem. Phys. 53, 1891–1898 (1970).
Oishi, R. et al. Rietveld analysis software for J-PARC. Nucl. Instrum. Methods Phys. Res. B 600, 94–96 (2009).
Oishi-Tomiyasu, R. et al. Application of matrix decomposition algorithms for singular matrices to the Pawley method in Z-Rietveld. J. Appl. Crystallogr. 45, 299–308 (2012).
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Bryce, D. L. & Wasylishen, R. E. A
Romao, C. P. et al. Zero thermal expansion in ZrMgMo
Dunstan, M. T. et al. Long-range-ordered coexistence of 4-, 5-, and 6-coordinate niobium in the mixed ionic-electronic conductor γ-Ba
Amoureux, J. P., Fernandez, C. & Steuernagel, S. Z filtering in MQMAS NMR. J. Magn. Reson. Ser. A 123, 116–118 (1996).
Engelhardt, G., Kentgens, A. P. M., Koller, H. & Samoson, A. Strategies for extracting NMR parameters from
pubmed: 10672941
Okhotnikov, K., Charpentier, T. & Cadars, S. Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J. Cheminform. 8, 1–15 (2016).
NIST. Neutron scattering lengths and cross sections. https://ncnr.nist.gov/resources/n-lengths/ (2022)
Massiot, D. et al. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70–76 (2002).
Adams, S. & Rao, R. P. High power lithium ion battery materials by computational design. Phys. Status Solidi 208, 1746–1753 (2011).

Auteurs

Yuta Yasui (Y)

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.

Masataka Tansho (M)

NMR Station, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki, 305-0003, Japan.

Kotaro Fujii (K)

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.

Yuichi Sakuda (Y)

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.

Atsushi Goto (A)

NMR Station, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki, 305-0003, Japan.

Shinobu Ohki (S)

NMR Station, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki, 305-0003, Japan.

Yuuki Mogami (Y)

NMR Station, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba, Ibaraki, 305-0003, Japan.

Takahiro Iijima (T)

Institute of Arts and Sciences, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan.

Shintaro Kobayashi (S)

Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.

Shogo Kawaguchi (S)

Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.

Keiichi Osaka (K)

Industrial Application and Partnership Division, Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.

Kazutaka Ikeda (K)

Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 203-1 Shirakata, Tokai, Ibaraki, 319-1106, Japan.
J-PARC Center, High Energy Accelerator Research Organization (KEK), 2-4 Shirakata-Shirane, Tokai, Ibaraki, 319-1106, Japan.
School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 203-1 Shirakata, Tokai, Ibaraki, 319-1106, Japan.

Toshiya Otomo (T)

Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 203-1 Shirakata, Tokai, Ibaraki, 319-1106, Japan.
J-PARC Center, High Energy Accelerator Research Organization (KEK), 2-4 Shirakata-Shirane, Tokai, Ibaraki, 319-1106, Japan.
School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 203-1 Shirakata, Tokai, Ibaraki, 319-1106, Japan.
Graduate School of Science and Engineering, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki, 319-1106, Japan.

Masatomo Yashima (M)

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan. yashima@cms.titech.ac.jp.

Classifications MeSH