Artificial Intelligence Model Trained with Sparse Data to Detect Facial and Cranial Bone Fractures from Head CT.
Computer-aided diagnosis (CAD)
Deep learning
Head CT
Skull fracture
Journal
Journal of digital imaging
ISSN: 1618-727X
Titre abrégé: J Digit Imaging
Pays: United States
ID NLM: 9100529
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
received:
24
10
2022
accepted:
31
03
2023
revised:
15
02
2023
pmc-release:
01
08
2024
medline:
9
8
2023
pubmed:
25
4
2023
entrez:
24
04
2023
Statut:
ppublish
Résumé
The presence of cranial and facial bone fractures is an important finding on non-enhanced head computed tomography (CT) scans from patients who have sustained head trauma. Some prior studies have proposed automatic cranial fracture detections, but studies on facial fractures are lacking. We propose a deep learning system to automatically detect both cranial and facial bone fractures. Our system incorporated models consisting of YOLOv4 for one-stage fracture detection and improved ResUNet (ResUNet++) for the segmentation of cranial and facial bones. The results from the two models mapped together provided the location of the fracture and the name of the fractured bone as the final output. The training data for the detection model were the soft tissue algorithm images from a total of 1,447 head CT studies (a total of 16,985 images), and the training data for the segmentation model included 1,538 selected head CT images. The trained models were tested on a test dataset consisting of 192 head CT studies (a total of 5,890 images). The overall performance achieved a sensitivity of 88.66%, a precision of 94.51%, and an F1 score of 0.9149. Specifically, the cranial and facial regions were evaluated and resulted in a sensitivity of 84.78% and 80.77%, a precision of 92.86% and 87.50%, and F1 scores of 0.8864 and 0.8400, respectively. The average accuracy for the segmentation labels concerning all predicted fracture bounding boxes was 80.90%. Our deep learning system could accurately detect cranial and facial bone fractures and identify the fractured bone region simultaneously.
Identifiants
pubmed: 37095310
doi: 10.1007/s10278-023-00829-6
pii: 10.1007/s10278-023-00829-6
pmc: PMC10407005
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1408-1418Informations de copyright
© 2023. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.
Références
Int J Oral Maxillofac Surg. 2021 Apr;50(4):471-476
pubmed: 32980217
AJNR Am J Neuroradiol. 2002 Jan;23(1):103-7
pubmed: 11827881
Neurosurg Rev. 2006 Jan;29(1):64-71
pubmed: 15937689
Med Phys. 2020 Jun;47(5):e218-e227
pubmed: 32418340
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:6437-6440
pubmed: 28269720
Radiographics. 2015 Sep-Oct;35(5):1585-601
pubmed: 26207580
Nat Commun. 2021 Feb 16;12(1):1066
pubmed: 33594071
Neuroimaging Clin N Am. 2014 Aug;24(3):439-65, vii-viii
pubmed: 25086806
Clin Orthop Relat Res. 2019 Nov;477(11):2482-2491
pubmed: 31283727
Skeletal Radiol. 2021 Sep;50(9):1821-1828
pubmed: 33599801
J Neurosurg Pediatr. 2015 Oct;16(4):426-31
pubmed: 26186360
Eur Radiol. 2009 Oct;19(10):2416-24
pubmed: 19440716
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:2973-6
pubmed: 26736916
Front Neurol. 2021 Oct 29;12:687931
pubmed: 34777193
Trauma Mon. 2013 Sep;18(2):86-9
pubmed: 24350159
Comput Methods Programs Biomed. 2019 Apr;171:27-37
pubmed: 30902248
Radiographics. 2006 Oct;26 Suppl 1:S117-32
pubmed: 17050510
Lancet. 2018 Dec 1;392(10162):2388-2396
pubmed: 30318264
Australas Radiol. 2003 Dec;47(4):368-74
pubmed: 14641187
Radiology. 1998 Jul;208(1):125-8
pubmed: 9646802
Radiol Phys Technol. 2020 Mar;13(1):6-19
pubmed: 31898014
Forensic Sci Med Pathol. 2022 Mar;18(1):20-29
pubmed: 34709561
Emerg Med Int. 2016;2016:5781790
pubmed: 26981282
J Craniomaxillofac Surg. 2014 Jun;42(4):305-12
pubmed: 24525027
Sensors (Basel). 2022 Feb 08;22(3):
pubmed: 35162030
Radiographics. 2019 Jul-Aug;39(4):1161-1182
pubmed: 31283455