ALS is imprinted in the chromatin accessibility of blood cells.


Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
24 Apr 2023
Historique:
received: 12 12 2022
accepted: 27 03 2023
revised: 20 03 2023
medline: 26 4 2023
pubmed: 25 4 2023
entrez: 24 04 2023
Statut: epublish

Résumé

Amyotrophic Lateral Sclerosis (ALS) is a complex and incurable neurodegenerative disorder in which genetic and epigenetic factors contribute to the pathogenesis of all forms of ALS. The interplay of genetic predisposition and environmental footprints generates epigenetic signatures in the cells of affected tissues, which then alter transcriptional programs. Epigenetic modifications that arise from genetic predisposition and systemic environmental footprints should in theory be detectable not only in affected CNS tissue but also in the periphery. Here, we identify an ALS-associated epigenetic signature ('epiChromALS') by chromatin accessibility analysis of blood cells of ALS patients. In contrast to the blood transcriptome signature, epiChromALS includes also genes that are not expressed in blood cells; it is enriched in CNS neuronal pathways and it is present in the ALS motor cortex. By combining simultaneous ATAC-seq and RNA-seq with single-cell sequencing in PBMCs and motor cortex from ALS patients, we demonstrate that epigenetic changes associated with the neurodegenerative disease can be found in the periphery, thus strongly suggesting a mechanistic link between the epigenetic regulation and disease pathogenesis.

Identifiants

pubmed: 37095391
doi: 10.1007/s00018-023-04769-w
pii: 10.1007/s00018-023-04769-w
pmc: PMC10126052
doi:

Substances chimiques

Chromatin 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

131

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : DA 1657/2-1

Informations de copyright

© 2023. The Author(s).

Références

Chen X, Feng W, Huang R, Guo X, Chen Y, Zheng Z, Shang H (2014) Evidence for peripheral immune activation in amyotrophic lateral sclerosis. J Neurol Sci 347:90–95. https://doi.org/10.1016/j.jns.2014.09.025
doi: 10.1016/j.jns.2014.09.025 pubmed: 25312013
Murdock BJ, Zhou T, Kashlan SR, Little RJ, Goutman SA, Feldman EL (2017) Correlation of peripheral immunity with rapid amyotrophic lateral sclerosis progression. JAMA Neurol 74:1446–1454. https://doi.org/10.1001/jamaneurol.2017.2255
doi: 10.1001/jamaneurol.2017.2255 pubmed: 28973548 pmcid: 5822195
McGill RB, Steyn FJ, Ngo ST, Thorpe KA, Heggie S, Ruitenberg MJ et al (2020) Monocytes and neutrophils are associated with clinical features in amyotrophic lateral sclerosis. Brain Commun. 2:fcaa013. https://doi.org/10.1093/braincomms/fcaa013
doi: 10.1093/braincomms/fcaa013 pubmed: 33033799 pmcid: 7530830
Zondler L, Müller K, Khalaji S, Bliederhäuser C, Ruf WP, Grozdanov V et al (2016) Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol 132:391–411. https://doi.org/10.1007/s00401-016-1548-y
doi: 10.1007/s00401-016-1548-y pubmed: 26910103
Zhao W, Beers DR, Hooten KG, Sieglaff DH, Zhang A, Kalyana-Sundaram S et al (2017) Characterization of gene expression phenotype in amyotrophic lateral sclerosis monocytes. JAMA Neurol 74:677–685. https://doi.org/10.1001/jamaneurol.2017.0357
doi: 10.1001/jamaneurol.2017.0357 pubmed: 28437540 pmcid: 5822209
Lee J-H, Kim EW, Croteau DL, Bohr VA (2020) Heterochromatin: an epigenetic point of view in aging. Exp Mol Med 52:1466–1474. https://doi.org/10.1038/s12276-020-00497-4
doi: 10.1038/s12276-020-00497-4 pubmed: 32887933 pmcid: 8080806
Booth LN, Brunet A (2016) The Aging Epigenome. Mol Cell 62:728–744. https://doi.org/10.1016/j.molcel.2016.05.013
doi: 10.1016/j.molcel.2016.05.013 pubmed: 27259204 pmcid: 4917370
Pal S, Tyler JK (2016) Epigenetics and aging. Sci Adv 2:e1600584. https://doi.org/10.1126/sciadv.1600584
doi: 10.1126/sciadv.1600584 pubmed: 27482540 pmcid: 4966880
Li Y, Tollefsbol TO (2016) Age-related epigenetic drift and phenotypic plasticity loss: implications in prevention of age-related human diseases. Epigenomics 8:1637–1651. https://doi.org/10.2217/epi-2016-0078
doi: 10.2217/epi-2016-0078 pubmed: 27882781 pmcid: 5618938
Zhang M, McKeever PM, Xi Z, Moreno D, Sato C, Bergsma T et al (2020) DNA methylation age acceleration is associated with ALS age of onset and survival. Acta Neuropathol 139:943–946. https://doi.org/10.1007/s00401-020-02131-z
doi: 10.1007/s00401-020-02131-z pubmed: 32146547 pmcid: 7181538
Xi Z, Zinman L, Moreno D, Schymick J, Liang Y, Sato C et al (2013) Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am J Hum Genet 92:981–989. https://doi.org/10.1016/j.ajhg.2013.04.017
doi: 10.1016/j.ajhg.2013.04.017 pubmed: 23731538 pmcid: 3675239
Zhang M, Tartaglia MC, Moreno D, Sato C, McKeever P, Weichert A et al (2017) DNA methylation age-acceleration is associated with disease duration and age at onset in C9orf72 patients. Acta Neuropathol 134:271–279. https://doi.org/10.1007/s00401-017-1713-y
doi: 10.1007/s00401-017-1713-y pubmed: 28439722 pmcid: 5508035
World Medical Association Declaration of Helsinki (2013) Ethical principles for medical research involving human subjects. JAMA 310:2191–2194. https://doi.org/10.1001/jama.2013.281053
doi: 10.1001/jama.2013.281053
Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299. https://doi.org/10.1080/146608200300079536
doi: 10.1080/146608200300079536 pubmed: 11464847
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218. https://doi.org/10.1038/nmeth.2688
doi: 10.1038/nmeth.2688 pubmed: 24097267 pmcid: 3959825
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. 2010
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j 17:10. https://doi.org/10.14806/ej.17.1.200
doi: 10.14806/ej.17.1.200
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923
doi: 10.1038/nmeth.1923 pubmed: 22388286 pmcid: 3322381
Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. https://doi.org/10.1093/bioinformatics/btw354
doi: 10.1093/bioinformatics/btw354 pubmed: 27312411 pmcid: 5039924
Orchard P, Kyono Y, Hensley J, Kitzman JO, Parker SCJ (2020) Quantification, dynamic visualization, and validation of bias in ATAC-seq data with ataqv. Cell Syst 10:298-306.e4. https://doi.org/10.1016/j.cels.2020.02.009
doi: 10.1016/j.cels.2020.02.009 pubmed: 32213349 pmcid: 8245295
Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS et al (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44:W160–W165. https://doi.org/10.1093/nar/gkw257
doi: 10.1093/nar/gkw257 pubmed: 27079975 pmcid: 4987876
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352
doi: 10.1093/bioinformatics/btp352 pubmed: 19505943 pmcid: 2723002
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P (2015) Sambamba: fast processing of NGS alignment formats. Bioinformatics 31:2032–2034. https://doi.org/10.1093/bioinformatics/btv098
doi: 10.1093/bioinformatics/btv098 pubmed: 25697820 pmcid: 4765878
Broad Institute (2019) Picard Toolkit. 2019;  http://broadinstitute.github.io/picard  
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137. https://doi.org/10.1186/gb-2008-9-9-r137
doi: 10.1186/gb-2008-9-9-r137 pubmed: 18798982 pmcid: 2592715
Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033
doi: 10.1093/bioinformatics/btq033 pubmed: 20110278 pmcid: 2832824
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656
doi: 10.1093/bioinformatics/btt656 pubmed: 24227677
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589. https://doi.org/10.1016/j.molcel.2010.05.004
doi: 10.1016/j.molcel.2010.05.004 pubmed: 20513432 pmcid: 2898526
Yu G, Wang L-G, He Q-Y (2015) ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31:2382–2383. https://doi.org/10.1093/bioinformatics/btv145
doi: 10.1093/bioinformatics/btv145 pubmed: 25765347
Stuart T, Srivastava A, Madad S, Lareau CA, Satija R (2021) Single-cell chromatin state analysis with Signac. Nat Methods 18:1333–1341. https://doi.org/10.1038/s41592-021-01282-5
doi: 10.1038/s41592-021-01282-5 pubmed: 34725479 pmcid: 9255697
Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R et al (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118. https://doi.org/10.1371/journal.pcbi.1003118
doi: 10.1371/journal.pcbi.1003118 pubmed: 23950696 pmcid: 3738458
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8
doi: 10.1186/s13059-014-0550-8 pubmed: 25516281 pmcid: 4302049
Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. https://doi.org/10.1186/1471-2105-9-559
doi: 10.1186/1471-2105-9-559 pubmed: 19114008 pmcid: 2631488
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. https://doi.org/10.1186/gb-2013-14-4-r36
doi: 10.1186/gb-2013-14-4-r36 pubmed: 23618408 pmcid: 4053844
Ayhan F, Douglas C, Lega BC, Konopka G (2021) Nuclei isolation from surgically resected human hippocampus. STAR Protoc. 2:100844. https://doi.org/10.1016/j.xpro.2021.100844
doi: 10.1016/j.xpro.2021.100844 pubmed: 34585170 pmcid: 8455478
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A et al (2021) Integrated analysis of multimodal single-cell data. Cell 184:3573-3587.e29. https://doi.org/10.1016/j.cell.2021.04.048
doi: 10.1016/j.cell.2021.04.048 pubmed: 34062119 pmcid: 8238499
Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502. https://doi.org/10.1038/nbt.3192
doi: 10.1038/nbt.3192 pubmed: 25867923 pmcid: 4430369
Wolf FA, Angerer P, Theis FJ (2018) SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19:15. https://doi.org/10.1186/s13059-017-1382-0
doi: 10.1186/s13059-017-1382-0 pubmed: 29409532 pmcid: 5802054
Squair JW, Gautier M, Kathe C, Anderson MA, James ND, Hutson TH et al (2021) Confronting false discoveries in single-cell differential expression. Nat Commun 12:5692. https://doi.org/10.1038/s41467-021-25960-2
doi: 10.1038/s41467-021-25960-2 pubmed: 34584091 pmcid: 8479118
Srivatsan SR, McFaline-Figueroa JL, Ramani V, Saunders L, Cao J, Packer J et al (2020) Massively multiplex chemical transcriptomics at single-cell resolution. Science 367:45–51. https://doi.org/10.1126/science.aax6234
doi: 10.1126/science.aax6234 pubmed: 31806696
Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H et al (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14:865–868. https://doi.org/10.1038/nmeth.4380
doi: 10.1038/nmeth.4380 pubmed: 28759029 pmcid: 5669064
Hafemeister C, Satija R (2019) Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20:296. https://doi.org/10.1186/s13059-019-1874-1
doi: 10.1186/s13059-019-1874-1 pubmed: 31870423 pmcid: 6927181
Ritchie ME, Phipson B, Di W, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007
doi: 10.1093/nar/gkv007 pubmed: 25605792 pmcid: 4402510
Carlson M (2017) GO.db: Bioconductor. https://doi.org/10.18129/B9.bioc.GO.db
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. https://doi.org/10.1038/75556
doi: 10.1038/75556 pubmed: 10802651 pmcid: 3037419
The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021;49:D325-D334. https://doi.org/10.1093/nar/gkaa1113
Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, Ma’ayan A (2016) The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database (Oxford). https://doi.org/10.1093/database/baw100
doi: 10.1093/database/baw100 pubmed: 27374120
Li MJ, Wang P, Liu X, Lim EL, Wang Z, Yeager M et al (2012) GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res 40:D1047–D1054. https://doi.org/10.1093/nar/gkr1182
doi: 10.1093/nar/gkr1182 pubmed: 22139925
Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 4:1184–1191. https://doi.org/10.1038/nprot.2009.97
doi: 10.1038/nprot.2009.97 pubmed: 19617889 pmcid: 3159387
Pagès H, Carlson M, Falcon S, Li N (2017) AnnotationDbi: Bioconductor. https://doi.org/10.18129/B9.bioc.AnnotationDbi
Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer
doi: 10.1007/978-3-319-24277-4
Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R et al (2019) Welcome to the tidyverse. JOSS 4:1686. https://doi.org/10.21105/joss.01686
doi: 10.21105/joss.01686
Kolde R (2018) pheatmap: Pretty Heatmaps.  https://CRAN.R-project.org/package=pheatmap  
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754
doi: 10.1038/nbt.1754 pubmed: 21221095 pmcid: 3346182
Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carré C et al (2019) RNA-seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep 26:1627-1640.e7. https://doi.org/10.1016/j.celrep.2019.01.041
doi: 10.1016/j.celrep.2019.01.041 pubmed: 30726743 pmcid: 6367568
Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C et al (2020) An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. https://doi.org/10.1126/science.aay5947
doi: 10.1126/science.aay5947 pubmed: 32139519
Ucar D, Márquez EJ, Chung C-H, Marches R, Rossi RJ, Uyar A et al (2017) The chromatin accessibility signature of human immune aging stems from CD8+ T cells. J Exp Med 214:3123–3144. https://doi.org/10.1084/jem.20170416
doi: 10.1084/jem.20170416 pubmed: 28904110 pmcid: 5626401
Choi S-J, Hong Y-H, Kim S-M, Shin J-Y, Suh YJ, Sung J-J (2020) High neutrophil-to-lymphocyte ratio predicts short survival duration in amyotrophic lateral sclerosis. Sci Rep 10:428. https://doi.org/10.1038/s41598-019-57366-y
doi: 10.1038/s41598-019-57366-y pubmed: 31949271 pmcid: 6965090
Wei Q-Q, Hou Y-B, Zhang L-Y, Ou R-W, Cao B, Chen Y-P, Shang H-F (2022) Neutrophil-to-lymphocyte ratio in sporadic amyotrophic lateral sclerosis. Neural Regen Res 17:875–880. https://doi.org/10.4103/1673-5374.322476
doi: 10.4103/1673-5374.322476 pubmed: 34472488
Zhang S, Cooper-Knock J, Weimer AK, Shi M, Moll T, Marshall JNG et al (2022) Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis. Neuron. https://doi.org/10.1016/j.neuron.2021.12.019
doi: 10.1016/j.neuron.2021.12.019 pubmed: 36476978 pmcid: 9851977
Eitan C, Siany A, Barkan E, Olender T, van Eijk KR, Moisse M, et al (2021) Non-coding genetic analysis implicates interleukin 18 receptor accessory protein 3′UTR in amyotrophic lateral sclerosis.  https://doi.org/10.1101/2021.06.03.446863
Huang N, Lee I, Marcotte EM, Hurles ME. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 2010;6:e1001154. https://doi.org/10.1371/journal.pgen.1001154 .
Fadista J, Oskolkov N, Hansson O, Groop L (2017) LoFtool: a gene intolerance score based on loss-of-function variants in 60 706 individuals. Bioinformatics 33:471–474. https://doi.org/10.1093/bioinformatics/btv602
doi: 10.1093/bioinformatics/btv602 pubmed: 27563026
Shepheard SR, Parker MD, Cooper-Knock J, Verber NS, Tuddenham L, Heath P et al (2021) Value of systematic genetic screening of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 92:510–518. https://doi.org/10.1136/jnnp-2020-325014
doi: 10.1136/jnnp-2020-325014 pubmed: 33589474
Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y et al (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890–893. https://doi.org/10.1126/science.1090842
doi: 10.1126/science.1090842 pubmed: 14593184
Okitsu CY, Hsieh C-L (2007) DNA methylation dictates histone H3K4 methylation. Mol Cell Biol 27:2746–2757. https://doi.org/10.1128/MCB.02291-06
doi: 10.1128/MCB.02291-06 pubmed: 17242185 pmcid: 1899905
Meissner A (2011) Guiding DNA methylation. Cell Stem Cell 9:388–390. https://doi.org/10.1016/j.stem.2011.10.014
doi: 10.1016/j.stem.2011.10.014 pubmed: 22056134
Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770. https://doi.org/10.1038/nature07107
doi: 10.1038/nature07107 pubmed: 18600261 pmcid: 2896277
Curradi M, Izzo A, Badaracco G, Landsberger N (2002) Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol 22:3157–3173. https://doi.org/10.1128/MCB.22.9.3157-3173.2002
doi: 10.1128/MCB.22.9.3157-3173.2002 pubmed: 11940673 pmcid: 133775
Aranda P, Agirre X, Ballestar E, Andreu EJ, Román-Gómez J, Prieto I et al (2009) Epigenetic signatures associated with different levels of differentiation potential in human stem cells. PLoS ONE 4:e7809. https://doi.org/10.1371/journal.pone.0007809
doi: 10.1371/journal.pone.0007809 pubmed: 19915669 pmcid: 2771914
Juliandi B, Abematsu M, Nakashima K (2010) Epigenetic regulation in neural stem cell differentiation. Dev Growth Differ 52:493–504. https://doi.org/10.1111/j.1440-169X.2010.01175.x
doi: 10.1111/j.1440-169X.2010.01175.x pubmed: 20608952
Liang D, Elwell AL, Aygün N, Krupa O, Wolter JM, Kyere FA et al (2021) Cell-type-specific effects of genetic variation on chromatin accessibility during human neuronal differentiation. Nat Neurosci 24:941–953. https://doi.org/10.1038/s41593-021-00858-w
doi: 10.1038/s41593-021-00858-w pubmed: 34017130 pmcid: 8254789
Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21:243–251. https://doi.org/10.1097/mop.0b013e32832925cc
doi: 10.1097/mop.0b013e32832925cc pubmed: 19663042 pmcid: 3035853
Gate RE, Cheng CS, Aiden AP, Siba A, Tabaka M, Lituiev D et al (2018) Genetic determinants of co-accessible chromatin regions in activated T cells across humans. Nat Genet 50:1140–1150. https://doi.org/10.1038/s41588-018-0156-2
doi: 10.1038/s41588-018-0156-2 pubmed: 29988122 pmcid: 6097927
Stewart-Morgan KR, Reverón-Gómez N, Groth A (2019) Transcription restart establishes chromatin accessibility after DNA replication. Mol Cell 75:284-297.e6. https://doi.org/10.1016/j.molcel.2019.04.033
doi: 10.1016/j.molcel.2019.04.033 pubmed: 31126739
Baxi EG, Thompson T, Li J, Kaye JA, Lim RG, Wu J et al (2022) Answer ALS, a large-scale resource for sporadic and familial ALS combining clinical and multi-omics data from induced pluripotent cell lines. Nat Neurosci 25:226–237. https://doi.org/10.1038/s41593-021-01006-0
doi: 10.1038/s41593-021-01006-0 pubmed: 35115730 pmcid: 8825283
van Rheenen W, Shatunov A, Dekker AM, McLaughlin RL, Diekstra FP, Pulit SL et al (2016) Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat Genet 48:1043–1048. https://doi.org/10.1038/ng.3622
doi: 10.1038/ng.3622 pubmed: 27455348 pmcid: 5556360
Nicolas A, Kenna KP, Renton AE, Ticozzi N, Faghri F, Chia R et al (2018) Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97:1268-1283.e6. https://doi.org/10.1016/j.neuron.2018.02.027
doi: 10.1016/j.neuron.2018.02.027 pubmed: 29566793 pmcid: 5867896

Auteurs

Julia K Kühlwein (JK)

Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany.

Wolfgang P Ruf (WP)

Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany.

Katharina Kandler (K)

Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany.

Simon Witzel (S)

Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany.

Christina Lang (C)

Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany.

Medhanie A Mulaw (MA)

Medical Faculty, University of Ulm, 89081, Ulm, Baden-Wuerttemberg, Germany.

Arif B Ekici (AB)

Institute of Human Genetics, University Clinic Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Bayern, Germany.

Jochen H Weishaupt (JH)

Division for Neurodegenerative Diseases, Neurology Department, University Medicine Mannheim, Heidelberg University, 68167, Mannheim, Baden-Wuerttemberg, Germany.

Albert C Ludolph (AC)

Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany.
German Center for Neurodegenerative Diseases (DZNE), 89081, Ulm, Baden-Wuerttemberg, Germany.

Veselin Grozdanov (V)

Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany.

Karin M Danzer (KM)

Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany. karin.danzer@dzne.de.
German Center for Neurodegenerative Diseases (DZNE), 89081, Ulm, Baden-Wuerttemberg, Germany. karin.danzer@dzne.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH