Nebulizers effectiveness on pulmonary delivery of alpha-1 antitrypsin.
Alpha-1 antitrypsin
Jet nebulizer
Protein drug delivery
Vibrating mesh nebulizer
Journal
Drug delivery and translational research
ISSN: 2190-3948
Titre abrégé: Drug Deliv Transl Res
Pays: United States
ID NLM: 101540061
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
accepted:
03
04
2023
medline:
31
8
2023
pubmed:
25
4
2023
entrez:
25
4
2023
Statut:
ppublish
Résumé
The nebulization of alpha-1 antitrypsin (AAT) for its administration to the lung could be an interesting alternative to parenteral infusion for patients suffering from AAT genetic deficiency (AATD). In the case of protein therapeutics, the effect of the nebulization mode and rate on protein conformation and activity must be carefully considered. In this paper two types of nebulizers, i.e., a jet and a mesh vibrating system, were used to nebulize a commercial preparation of AAT for infusion and compared. The aerosolization performance, in terms of mass distribution, respirable fraction, and drug delivery efficiency, as well as the activity and aggregation state of AAT upon in vitro nebulization were investigated. The two nebulizers demonstrated equivalent aerosolization performances, but the mesh nebulizer provided a higher efficiency in the delivery of the dose. The activity of the protein was acceptably preserved by both nebulizers and no aggregation or changes in its conformation were identified. This suggests that nebulization of AAT represents a suitable administration strategy ready to be translated to the clinical practice for delivering the protein directly to the lungs in AATD patients, either as a support therapy to parenteral administration or for subjects with a precocious diagnosis, to prevent the onset of pulmonary symptoms.
Identifiants
pubmed: 37097606
doi: 10.1007/s13346-023-01346-3
pii: 10.1007/s13346-023-01346-3
pmc: PMC10468431
doi:
Substances chimiques
Aerosols
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2653-2663Informations de copyright
© 2023. The Author(s).
Références
Kelly E, Greene CM, Carroll TP, McElvaney NG, O’Neill SJ. Alpha-1 antitrypsin deficiency. Respir Med. 2010;104:763–72.
doi: 10.1016/j.rmed.2010.01.016
pubmed: 20303723
Bianchera A, Alomari E, Bruno S. Augmentation Therapy with alpha-1 antitrypsin: present and future of production, formulation, and delivery. Current Medicinal Chemistry. 29:385–410.
Hubbard RC, Sellers S, Czerski D, Stephens L, Crystal RG. Biochemical efficacy and safety of monthly augmentation therapy for α1-antitrypsin deficiency. JAMA. 1988;260:1259–64.
doi: 10.1001/jama.1988.03410090091037
pubmed: 3261353
Vogelmeier C, Kirlath I, Warrington S, Banik N, Ulbrich E, Du Bois RM. The intrapulmonary half-life and safety of aerosolized alpha1-protease inhibitor in normal volunteers. Am J Respir Crit Care Med. 1997;155:536–41.
doi: 10.1164/ajrccm.155.2.9032191
pubmed: 9032191
McElvaney NG, Hubbard RC, Birrer P, Crystal RG, Chernick MS, Frank MM, et al. Aerosol α1 -antitrypsin treatment for cystic fibrosis. The Lancet. 1991;337:392–4.
doi: 10.1016/0140-6736(91)91167-S
Hubbard RC, McElvaney NG, Sellers SE, Healy JT, Czerski DB, Crystal RG. Recombinant DNA-produced al -antitrypsin administered by aerosol augments lower respiratory tract antineutrophil elastase defenses in individuals with al-antitrypsin deficiency. The Journal of Clinical Investigation. 84:1349–54.
Hertel SP, Winter G, Friess W. Protein stability in pulmonary drug delivery via nebulization. Adv Drug Deliv Rev. 2015;93:79–94.
doi: 10.1016/j.addr.2014.10.003
pubmed: 25312674
Flament MP, Leterme P, Burnouf T, Gayot A. Influence of formulation on jet nebulisation quality of α1 protease inhibitor. Int J Pharm. 1999;178:101–9.
doi: 10.1016/S0378-5173(98)00354-8
pubmed: 10205630
Flament MP, Leterme P, Gayot A. Influence of the technological parameters of ultrasonic nebulisation on the nebulisation quality of α1 protease inhibitor (α1PI). International Journal of Pharmaceutics Elsevier. 1999;189:197–204.
doi: 10.1016/S0378-5173(99)00248-3
Zhu W, Li L, Deng M, Wang B, Li M, Ding G, et al. Oxidation-resistant and thermostable forms of alpha-1 antitrypsin from Escherichia coli inclusion bodies. FEBS Open Bio. 2018;8:1711–21.
doi: 10.1002/2211-5463.12515
pubmed: 30338221
pmcid: 6168689
Bodier-Montagutelli E, Respaud R, Perret G, Baptista L, Duquenne P, Heuzé-Vourc’h N, et al. Protein stability during nebulization: mind the collection step! European Journal of Pharmaceutics and Biopharmaceutics. 2020;152:23–34.
Geller DE, Kesser KC. The I-neb adaptive aerosol delivery system enhances delivery of alpha1-antitrypsin with controlled inhalation. J Aerosol Med Pulm Drug Deliv. 2010;23(Suppl 1):S55-59.
doi: 10.1089/jamp.2009.0793
pubmed: 20373910
Gaggar A, Chen J, Chmiel JF, Dorkin HL, Flume PA, Griffin R, et al. Inhaled alpha 1 -proteinase inhibitor therapy in patients with cystic fibrosis. J Cyst Fibros. 2016;15:227–33.
doi: 10.1016/j.jcf.2015.07.009
pubmed: 26321218
Martin SL, Downey D, Bilton D, Keogan MT, Edgar J, Elborn JS, et al. Safety and efficacy of recombinant alpha1-antitrypsin therapy in cystic fibrosis. Pediatr Pulmonol. 2006;41:177–83.
doi: 10.1002/ppul.20345
pubmed: 16372352
Griese M, Latzin P, Kappler M, Weckerle K, Heinzlmaier T, Bernhardt T, et al. 1-Antitrypsin inhalation reduces airway inflammation in cystic fibrosis patients. Eur Respir J. 2006;29:240–50.
doi: 10.1183/09031936.00047306
pubmed: 17050563
Brand P, Beckmann H, Maas Enriquez M, Meyer T, Mullinger B, Sommerer K, et al. Peripheral deposition of 1-protease inhibitor using commercial inhalation devices. Eur Respir J. 2003;22:263–7.
doi: 10.1183/09031936.03.00096802
pubmed: 12952258
Brand P, Schulte M, Wencker M, Herpich CH, Klein G, Hanna K, et al. Lung deposition of inhaled 1-proteinase inhibitor in cystic fibrosis and 1-antitrypsin deficiency. Eur Respir J. 2009;34:354–60.
doi: 10.1183/09031936.00118408
pubmed: 19251783
Stolk J, Tov N, Chapman KR, Fernandez P, MacNee W, Hopkinson NS, et al. Efficacy and safety of inhaled α1-antitrypsin in patients with severe α1-antitrypsin deficiency and frequent exacerbations of COPD. Eur Respir J. 2019;54:1900673.
doi: 10.1183/13993003.00673-2019
pubmed: 31467115
Franciosi AN, McCarthy C, McElvaney NG. The efficacy and safety of inhaled human α-1 antitrypsin in people with α-1 antitrypsin deficiency-related emphysema. Expert Rev Respir Med. 2015;9:143–51.
doi: 10.1586/17476348.2015.1002472
pubmed: 25598013
European Pharmacopoeia Online [Internet]. [cited 2023 Jan 30]. Available from: https://pheur.edqm.eu/home
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
doi: 10.1016/0003-2697(76)90527-3
pubmed: 942051
Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987;166:368–79.
doi: 10.1016/0003-2697(87)90587-2
pubmed: 2449095
Bianchera A, Alomari E, Michielon A, Bazzoli G, Ronda N, Pighini G, et al. Recombinant alpha-1 antitrypsin as dry powder for pulmonary administration: a formulative proof of concept. Pharmaceutics. 2022;14:2754.
doi: 10.3390/pharmaceutics14122754
pubmed: 36559248
pmcid: 9784676
Miles AJ, Ramalli SG, Wallace BA. DichroWeb, a website for calculating protein secondary structure from circular dichroism spectroscopic data. Protein Sci. 2022;31:37–46.
doi: 10.1002/pro.4153
pubmed: 34216059
Mazurenko S, Stourac J, Kunka A, Nedeljković S, Bednar D, Prokop Z, et al. CalFitter: a web server for analysis of protein thermal denaturation data. Nucleic Acids Res. 2018;46:W344–9.
doi: 10.1093/nar/gky358
pubmed: 29762722
pmcid: 6031030
Wewers MD, Casolaro MA, Sellers SE, Swayze SC, McPhaul KM, Wittes JT, et al. Replacement therapy for alpha 1-antitrypsin deficiency associated with emphysema. N Engl J Med. 1987;316:1055–62.
doi: 10.1056/NEJM198704233161704
pubmed: 3494198
Hastedt JE, Bäckman P, Clark AR, Doub W, Hickey A, Hochhaus G, et al. Scope and relevance of a pulmonary biopharmaceutical classification system AAPS/FDA/USP Workshop March 16–17th, 2015 in Baltimore. MD AAPS Open. 2016;2:1.
doi: 10.1186/s41120-015-0002-x
Kamada, Ltd. A Prospective phase III multi-center, placebo controlled, double blind study to evaluate the efficacy and safety of “Kamada-AAT for Inhalation” 80 mg per day in adult patients with congenital alpha-1 antitrypsin deficiency with moderate and severe airflow limitation (40% ≤ FEV1 ≤ 80% of predicted; FEV1/SVC ≤ 70%) [Internet]. clinicaltrials.gov; 2022 Aug. Report No.: NCT04204252. Available from: https://clinicaltrials.gov/ct2/show/NCT04204252
Hubbard RC, Casolaro MA, Mitchell M, Sellers SE, Arabia F, Matthay MA, et al. Fate of aerosolized recombinant DNA-produced ai-antitrypsin: use of the epithelial surface of the lower respiratory tract to administer proteins of therapeutic importance. Medical Sciences. 1989;5.
Beasley R, Rafferty P, Holgate S. Adverse reactions to the non-drug constituents of nebuliser solutions. Br J Clin Pharmacol. 1988;25:283–7.
doi: 10.1111/j.1365-2125.1988.tb03305.x
pubmed: 3358893
pmcid: 1386351
Snell NJC. Adverse reactions to inhaled drugs. Respir Med. 1990;84:345–8.
doi: 10.1016/S0954-6111(08)80066-2
pubmed: 2247663
Zhang L, Mendoza‐Sassi RA, Wainwright C, Klassen TP. Nebulised hypertonic saline solution for acute bronchiolitis in infants. Cochrane Database Syst Rev. 2017;2017:CD006458.
Hatley RH, Byrne SM. Variability in delivered dose and respirable delivered dose from nebulizers: are current regulatory testing guidelines sufficient to produce meaningful information? Med Devices (Auckl). 2017;10:17–28.
pubmed: 28203110
Ghazanfari T, Elhissi AMA, Ding Z, Taylor KMG. The influence of fluid physicochemical properties on vibrating-mesh nebulization. Int J Pharm. 2007;339:103–11.
doi: 10.1016/j.ijpharm.2007.02.035
pubmed: 17451896
Mc Callion ONM, Patel MJ. Viscosity effects on nebulisation of aqueous solutions. Int J Pharm. 1996;130:245–9.
doi: 10.1016/0378-5173(95)04291-1
Buttini F, Rossi I, Di Cuia M, Rossi A, Colombo G, Elviri L, et al. Combinations of colistin solutions and nebulisers for lung infection management in cystic fibrosis patients. Int J Pharm. 2016;502:242–8.
doi: 10.1016/j.ijpharm.2016.02.005
pubmed: 26854429
Steckel H, Eskandar F. Factors affecting aerosol performance during nebulization with jet and ultrasonic nebulizers. Eur J Pharm Sci. 2003;19:443–55.
doi: 10.1016/S0928-0987(03)00148-9
pubmed: 12907295
Germershaus O, Schultz I, Lühmann T, Beck-Broichsitter M, Högger P, Meinel L. Insulin-like growth factor-I aerosol formulations for pulmonary delivery. Eur J Pharm Biopharm. 2013;85:61–8.
doi: 10.1016/j.ejpb.2013.03.011
pubmed: 23958318
Keller M, Tservistas M, Bitterle E, Bauer S. Aerosol characterization of alpha-1 antitrypsin after nebulization with the eFlow(R): a novel vibrating perforated membrane nebulizer. Respiratory Drug Delivery X, Boca Raton, FL, USA. 2006;733–6.
Fröhlich E, Salar-Behzadi S. Oral inhalation for delivery of proteins and peptides to the lungs. Eur J Pharm Biopharm. 2021;163:198–211.
doi: 10.1016/j.ejpb.2021.04.003
pubmed: 33852968
Liu X, Vanvarenberg K, Kouassi KGW, Mahri S, Vanbever R. Production and characterization of mono-PEGylated alpha-1 antitrypsin for augmentation therapy. Int J Pharm. 2022;612: 121355.
doi: 10.1016/j.ijpharm.2021.121355
pubmed: 34883205
Taggart C, Cervantes-Laurean D, Kim G, McElvaney NG, Wehr N, Moss J, et al. Oxidation of either methionine 351 or methionine 358 in alpha 1-antitrypsin causes loss of anti-neutrophil elastase activity. J Biol Chem. 2000;275:27258–65.
doi: 10.1016/S0021-9258(19)61505-X
pubmed: 10867014
Cipolla D, Gonda I, Shire SJ. Characterization of aerosols of human recombinant deoxyribonuclease I (rhDNase) generated by jet nebulizers. Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists. 1994;11:491–8.
doi: 10.1023/A:1018998028490