Buried Interface Dielectric Layer Engineering for Highly Efficient and Stable Inverted Perovskite Solar Cells and Modules.
aluminum oxide nanoparticles
defect passivation
perovskite solar cells
phenethylammonium bromide
stability
Journal
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
ISSN: 2198-3844
Titre abrégé: Adv Sci (Weinh)
Pays: Germany
ID NLM: 101664569
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
revised:
13
04
2023
received:
27
01
2023
medline:
26
4
2023
pubmed:
26
4
2023
entrez:
25
4
2023
Statut:
ppublish
Résumé
Stability and scalability are essential and urgent requirements for the commercialization of perovskite solar cells (PSCs), which are retarded by the non-ideal interface leading to non-radiative recombination and degradation. Extensive efforts are devoted to reducing the defects at the perovskite surface. However, the effects of the buried interface on the degradation and non-radiative recombination need to be further investigated. Herein, an omnibearing strategy to modify buried and top surfaces of perovskite film to reduce interfacial defects, by incorporating aluminum oxide (Al
Identifiants
pubmed: 37098640
doi: 10.1002/advs.202300586
pmc: PMC10323608
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2300586Subventions
Organisme : National Natural Science Foundation of China
ID : 22109067
Organisme : Guangdong Provincial Science and Technology Program
ID : 2022A1515010085
Organisme : Guangdong Provincial Science and Technology Program
ID : 2021ZT09C064
Organisme : Guangdong Provincial Science and Technology Program
ID : 2021QN02L138
Organisme : Shenzhen Science and Technology Program
ID : JCYJ20220530115013029
Organisme : Shenzhen municipal government
Organisme : Southern University of Science and Technology
Informations de copyright
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
Références
Nat Commun. 2017 Jun 01;8:15684
pubmed: 28569749
Adv Mater. 2021 Feb;33(7):e2006435
pubmed: 33393159
Science. 2019 Dec 20;366(6472):1509-1513
pubmed: 31857483
Sci Adv. 2021 Dec 03;7(49):eabj7930
pubmed: 34851671
Science. 2022 Apr;376(6588):73-77
pubmed: 35175829
Science. 2022 Apr 22;376(6591):416-420
pubmed: 35446656
Adv Mater. 2020 Mar;32(12):e1907757
pubmed: 32068922
Adv Mater. 2022 Dec;34(49):e2207362
pubmed: 36268995
Adv Mater. 2021 Oct;33(41):e2103394
pubmed: 34425038
Adv Sci (Weinh). 2023 Jul;10(19):e2300586
pubmed: 37098640
Adv Mater. 2016 Mar 16;28(11):2253-8
pubmed: 26790006
Adv Mater. 2018 Mar;30(11):
pubmed: 29349858
Adv Mater. 2022 Nov;34(44):e2203794
pubmed: 35771986
J Am Chem Soc. 2009 May 6;131(17):6050-1
pubmed: 19366264
Science. 2023 Feb 17;379(6633):683-690
pubmed: 36795834
ACS Energy Lett. 2020;5:2024-2026
pubmed: 34192148
Adv Mater. 2016 Aug;28(31):6734-9
pubmed: 27184864
ACS Appl Mater Interfaces. 2022 Jan 12;14(1):2166-2176
pubmed: 34936322
Nat Commun. 2015 Jul 20;6:7747
pubmed: 26190275
Nature. 2021 Feb;590(7847):587-593
pubmed: 33627807
Sci Adv. 2022 Sep 23;8(38):eabo5977
pubmed: 36149953
Science. 2015 Feb 27;347(6225):967-70
pubmed: 25636799
Science. 2021 Jan 22;371(6527):390-395
pubmed: 33479151
Chem Commun (Camb). 2022 Dec 15;58(100):13891-13894
pubmed: 36448582
Science. 2022 Sep 23;377(6613):1425-1430
pubmed: 36137050
Nat Commun. 2018 Dec 10;9(1):5265
pubmed: 30532038
Science. 2013 Oct 18;342(6156):341-4
pubmed: 24136964
Science. 2021 Aug 20;373(6557):902-907
pubmed: 34413234
Angew Chem Int Ed Engl. 2022 Aug 26;61(35):e202206914
pubmed: 35713582
Nature. 2022 Nov;611(7935):278-283
pubmed: 36049505