Main conclusions and perspectives from the collective scientific assessment of the effects of plant protection products on biodiversity and ecosystem services along the land-sea continuum in France and French overseas territories.
Biocontrol
Ecological risk assessment
Ecotoxicology
Environment
Expertise
Modelling
Pesticides
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
26 Apr 2023
26 Apr 2023
Historique:
received:
25
11
2022
accepted:
07
04
2023
pubmed:
26
4
2023
medline:
26
4
2023
entrez:
26
4
2023
Statut:
aheadofprint
Résumé
Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020-2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA's main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.
Identifiants
pubmed: 37099095
doi: 10.1007/s11356-023-26952-z
pii: 10.1007/s11356-023-26952-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
[MEA] Millennium Ecosystem Assessment (2005) Ecosystems and human wellbeing: synthesis. Island Press, Washington (DC), p 137
Aubertot JN, Barbier JM, Carpentier A, Gril JJ, Guichard L, Lucas P, Savary S, Savini I, Voltz M (2007) Pesticides, agriculture et environnement. Réduire l’utilisation des pesticides et limiter leurs impacts environnementaux. In: Expertise scientifique collective Inra-Cemagref (décembre 2005). Quae, Versailles, p 120. https://hal.science/hal-01173732
Baker LF, Mudge JF, Houlahan JE, Thompson DG, Kidd KA (2014) The direct and indirect effects of a glyphosate-based herbicide and nutrients on chironomidae (diptera) emerging from small wetlands. Environ Toxicol Chem 33:2076–2085. https://doi.org/10.1002/etc.2657
doi: 10.1002/etc.2657
Bayat S, Geiser F, Kristiansen P, Wilson SC (2014) Organic contaminants in bats: trends and new issues. Envir Int 63:40–52. https://doi.org/10.1016/j.envint.2013.10.009
doi: 10.1016/j.envint.2013.10.009
Beketov MA, Kefford BJ, Schafer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci USA 110:11039–11043. https://doi.org/10.1073/pnas.1305618110
doi: 10.1073/pnas.1305618110
Bernard M, Boutry S, Lissalde S, Guibaud G, Saut M, Rebillard JP, Mazzella N (2019) Combination of passive and grab sampling strategies improves the assessment of pesticide occurrence and contamination levels in a large-scale watershed. Sci Total Environ 651:684–695. https://doi.org/10.1016/j.scitotenv.2018.09.20
doi: 10.1016/j.scitotenv.2018.09.20
Borgå K, Fisk AT, Hoekstra PF, Muir DCG (2004) Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs. Environ Toxicol Chem 23:2367–2385. https://doi.org/10.1897/03-518
doi: 10.1897/03-518
Brandt A, Hohnheiser B, Sgolastra F, Bosch J, Meixner MD, Buchler R (2020) Immunosuppression response to the neonicotinoid insecticide thiacloprid in females and males of the red mason bee Osmia bicornis L. Sci Rep 10:4670. https://doi.org/10.1038/s41598-020-61445-w
doi: 10.1038/s41598-020-61445-w
Brittain C, Bommarco R, Vighi M, Settele J, Potts SG (2010) Organic farming in isolated landscapes does not benefit flower-visiting insects and pollination. Biol Conserv 143:1860–1867. https://doi.org/10.1016/j.biocon.2010.04.029
doi: 10.1016/j.biocon.2010.04.029
Brosed M, Lamothe S, Chauvet E (2016) Litter breakdown for ecosystem integrity assessment also applies to streams affected by pesticides. Hydrobiologia 773:87. https://doi.org/10.1007/s10750-016-2681-2
doi: 10.1007/s10750-016-2681-2
Brühl CA, Zaller JG (2019) Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front Environ Sci 7:177. https://doi.org/10.3389/fenvs.2019.00177
Bruhl CA, Schmidt T, Pieper S, Alscher A (2013) Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline? Sci Rep 3:1135. https://doi.org/10.1038/srep01135
doi: 10.1038/srep01135
Eng ML, Stutchbury BJM, Morrissey CA (2017) Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Sci Rep 7:15176. https://doi.org/10.1038/s41598-017-15446-x
doi: 10.1038/s41598-017-15446-x
Eng ML, Stutchbury BJM, Morrissey CA (2019) A neonicotinoid insecticide reduces fueling and delays migration in songbirds. Science 365:1177–1180. https://doi.org/10.1126/science.aaw9419
doi: 10.1126/science.aaw9419
European Parliament and the Council (2009) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC, vol 309. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009R1107 . Accessed 14 Jan 2022
Faber JH, Marshall S, Van den Brink PJ, Maltby L (2019) Priorities and opportunities in the application of the ecosystem services concept in risk assessment for chemicals in the environment. Sci Total Environ 651:1067–1077. https://doi.org/10.1016/j.scitotenv.2018.09.209
doi: 10.1016/j.scitotenv.2018.09.209
Fernandez D, Voss K, Bundschuh M, Zubrod JP, Schafer RB (2015) Effects of fungicides on decomposer communities and litter decomposition in vineyard streams. Sci Total Environ 533:40–48. https://doi.org/10.1016/j.scitotenv.2015.06.090
doi: 10.1016/j.scitotenv.2015.06.090
Garland G, Banerjee S, Edlinger A, Oliveira Hagen E, Herzog C, Wittwer R, Philippot L, Maestre FT, van der Heijden M (2021) A closer look at the functions behind ecosystem multifunctionality: a review. J Ecol 109:600–613. https://doi.org/10.1111/1365-2745.13511
doi: 10.1111/1365-2745.13511
Geldenhuys M, Gaigher R, Pryke JS, Samways MJ (2021) Diverse herbaceous cover crops promote vineyard arthropod diversity across different management regimes. Agric Ecosyst Enviro 307:107222. https://doi.org/10.1016/j.agee.2020.1072
doi: 10.1016/j.agee.2020.1072
Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res 22:103–118. https://doi.org/10.1007/s11356-014-3180-5
doi: 10.1007/s11356-014-3180-5
Giuliano D, Cardarelli E, Bogliani G (2018) Grass management intensity affects butterfly and orthopteran diversity on rice field banks. Agric Ecosyst Environ 267:147–155. https://doi.org/10.1016/j.agee.2018.08.019
doi: 10.1016/j.agee.2018.08.019
Gonzalez-Gaya B, Lopez-Herguedas N, Bilbao D, Mijangos L, Iker AM, Etxebarria N, Irazola M, Prieto A, Olivares M, Zuloaga O (2021) Suspect and non-target screening: the last frontier in environmental analysis. Anal Methods 13:1876–1904. https://doi.org/10.1039/d1ay00111
doi: 10.1039/d1ay00111
Haines-Young R, Potschin MB (2018) Common International Classification of Ecosystem Services (CICES) V5.1 and guidance on application of the revised structure. https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf . Accessed 24 Apr 2023
Hallmann CA, Foppen RPB, van Turnhout CAM, de Kroon H, Jongejans E (2014) Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511:341–343. https://doi.org/10.1038/nature13531
doi: 10.1038/nature13531
Humann-Guilleminot S, Laurent S, Bize P, Roulin A, Glauser G, Helfenstein F (2021) Contamination by neonicotinoid insecticides in barn owls (Tyto alba) and Alpine swifts (Tachymarptis melba). Sci Total Environ 785:147403. https://doi.org/10.1016/j.scitotenv.2021.147403
doi: 10.1016/j.scitotenv.2021.147403
IPBES (2019) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In: Brondizio ES, Settele J, Díaz S, Ngo HT et al (eds). IPBES secretariat, Bonn, p 1148. https://doi.org/10.5281/zenodo.3553579
Kiesecker JM (2011) Global stressors and the global decline of amphibians: tipping the stress immunocompetency axis. Ecol Res 26:897–908. https://doi.org/10.1007/s11284-010-0702-6
doi: 10.1007/s11284-010-0702-6
Klaus F, Tscharntke T, Bischoff G, Grass I (2021) Floral resource diversification promotes solitary bee reproduction and may offset insecticide effects - evidence from a semi-field experiment. Ecol Lett 24:668–675. https://doi.org/10.1111/ele.1368
doi: 10.1111/ele.1368
Larras F, Charles S, Chaumot A, Pelosi C, Le Gall M, Mamy L, Beaudouin R (2022) A critical review of effect modeling for ecological risk assessment of plant protection products. Environ Sci Pollut Res 29:43448–43500. https://doi.org/10.1007/s11356-022-19111-3
doi: 10.1007/s11356-022-19111-3
Lee JC, Menalled FB, Landis DA (2001) Refuge habitats modify impact of insecticide disturbance on carabid beetle communities. J Appl Ecol 38:472–483. https://doi.org/10.1046/j.1365-2664.2001.00602
doi: 10.1046/j.1365-2664.2001.00602
Lennon RJ, Isaac NJB, Shore RF, Peach WJ, Dunn JC, Pereira MG, Arnold KE, Garthwaite D, Brown CD (2019) Using long-term datasets to assess the impacts of dietary exposure to neonicotinoids on farmland bird populations in England. Plos One 14:e0223093. https://doi.org/10.1371/journal.pone.0223093
doi: 10.1371/journal.pone.0223093
Maltby L, Brown R, Faber JH, Galic N, Van den Brink PJ, Warwick O, Marshall S (2021) Assessing chemical risk within an ecosystem services framework: implementation and added value. Sci Total Environ 791:148631. https://doi.org/10.1016/j.scitotenv.2021.148631
doi: 10.1016/j.scitotenv.2021.148631
Mamy L, Pesce S, Sanchez W, et al. (2022). Impacts des produits phytopharmaceutiques sur la biodiversité et les services écosystémiques. Rapport de l’expertise scientifique collective. [Rapport de recherche] INRAE; IFREMER. p 1408 https://doi.org/10.17180/0gp2-cd65
Mann RM, Hyne RV, Choung CB, Wilson SP (2009) Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ Pollut 157:2903–2927. https://doi.org/10.1016/j.envpol.2009.05.015
doi: 10.1016/j.envpol.2009.05.015
Martinez ND (1996) Defining and measuring functional aspects of biodiversity. In: Gaston K (ed) Biodiversity: a biology of numbers and difference. Blackwell Science, Oxford, pp 114–148
Millot F, Decors A, Mastain O, Quintaine T, Berny P, Vey D, Lasseur R, Bro E (2017) Field evidence of bird poisonings by imidacloprid-treated seeds: a review of incidents reported by the French SAGIR network from 1995 to 2014. Environ Sci Pollut Res 24:5469–5485. https://doi.org/10.1007/s11356-016-8272-y
doi: 10.1007/s11356-016-8272-y
Mineau P, Callaghan C (2018) Neonicotinoid insecticides and bats: an assessment of the direct and indirect risks. Canadian Wildlife Federation, Ontario, p 83
Moller AP (2019) Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol Evol 9:6581–6587. https://doi.org/10.1002/ece3.5236
doi: 10.1002/ece3.5236
Morrissey C, Fritsch C, Fremlin K, Adams W, Borgå K, Brinkmann M, Eulaers I, Gobas F, Moore DRJ, van den Brink N, Wickwire T (2023) Advancing exposure assessment approaches to improve wildlife risk assessment. Integr Environ Assess Manag 1–25. https://doi.org/10.1002/ieam.4743
Mougin C, Bouchez A, Denaix L, Garric J, Martin-Laurent F (2018a) ECOTOX, new questions for terrestrial and aquatic ecotoxicology. Environ Sci Pollut Res 25:33841–33843. https://doi.org/10.1007/s11356-018-3179-4
doi: 10.1007/s11356-018-3179-4
Mougin C, Gouy V, Bretagnolle V et al (2018b) RECOTOX, a French initiative in ecotoxicology-toxicology to monitor, understand and mitigate the ecotoxicological impacts of pollutants in socioagroecosystems. Environ Sci Pollut Res 25:33882–33894. https://doi.org/10.1007/s11356-018-2716-5
doi: 10.1007/s11356-018-2716-5
Munschy C, Chouvelon T, Bely N, Pollono C, Mauffret A, Spitz J (2019) Legacy and emerging organohalogen compounds in deep-sea pelagic organisms from the bay of biscay (northeast atlantic). Organohalog Compd 81:108–111
O’Shea TJ, Johnston JJ (2009) Environmental contaminants and bats: investigating exposure and effects. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats. The Johns Hopkins University Press, Baltimore, pp 500–528
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Aldrich A, Berg C, Ortiz-Santaliestra M, Weir S, Streissl F, Smith RH, Efsa Panel Plant Protection Products and their Residues (2018) Scientific Opinion on the state of the science on pesticide risk assessment for amphibians and reptiles. EFSA J 16:e05125. https://doi.org/10.2903/j.efsa.2018.5125
doi: 10.2903/j.efsa.2018.5125
Oliveira JM, Destro ALF, Freitas MB, Oliveira LL (2021) How do pesticides affect bats? - A brief review of recent publications. Braz J Biol 81:499–507. https://doi.org/10.1590/1519-6984.225330
doi: 10.1590/1519-6984.225330
Pearsons KA, Tooker JF (2021) Preventive insecticide use affects arthropod decomposers and decomposition in field crops. Appl Soil Ecol 157:103757. https://doi.org/10.1016/j.apsoil.2020.103757
doi: 10.1016/j.apsoil.2020.103757
Pesce S, Martin-Laurent F, Rouard N, Montuelle B (2009) Potential for microbial diuron mineralisation in a small wine-growing watershed: from treated plots to lotic receiver hydrosystem. Pest Manag Sci 65:651–657. https://doi.org/10.1002/ps.17
doi: 10.1002/ps.17
Pesce S, Mamy L, Achard AL, Le Gall M, Le Perchec S, Réchauchère O, Tibi A, Leenhardt S, Sanchez W (2021) Collective scientific assessment as a relevant tool to inform public debate and policymaking: an illustration about the effects of plant protection products on biodiversity and ecosystem services. Environ Sci Pollut Res 28:38448–38454. https://doi.org/10.1007/s11356-021-14863-w
doi: 10.1007/s11356-021-14863-w
Sanchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020
doi: 10.1016/j.biocon.2019.01.020
Scientific Committee EFSA, More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernandez-Jerez A, Bennekou SH, Koutsoumanis K, Machera K, Naegeli H, Nielsen SS, Schlatter J, Schrenk D, Silano V, Turck D, Younes M, Arnold G, Dorne JL, Maggiore A, Pagani S, Szentes C, Terry S, Tosi S, Vrbos D, Zamariola G, Rortais A (2021) A systems-based approach to the environmental risk assessment of multiple stressors in honey bees. Efsa J 19:6607. https://doi.org/10.2903/j.efsa.2021.6607
doi: 10.2903/j.efsa.2021.6607
Stanley DA, Garratt MPD, Wickens JB, Wickens VJ, Potts SG, Raine NE (2015) Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528:548–550. https://doi.org/10.1038/nature16167
doi: 10.1038/nature16167
Stanton RL, Morrissey CA, Clark RG (2018) Analysis of trends and agricultural drivers of farmland bird declines in North America: a review. Agric Ecosyst Environ 254:244–254. https://doi.org/10.1016/j.agee.2017.11.028
doi: 10.1016/j.agee.2017.11.028
Topping CJ, Aldrich A, Berny P (2020) Overhaul environmental risk assessment for pesticides. Science 367:360–363. https://doi.org/10.1126/science.aay1144
doi: 10.1126/science.aay1144
Vazquez-Blanco R, Arias-Estevez M, Baath E, Fernandez-Calvino D (2020) Comparison of Cu salts and commercial Cu based fungicides on toxicity towards microorganisms in soil. Environ Pollut 257:113585. https://doi.org/10.1016/j.envpol.2019
doi: 10.1016/j.envpol.2019
Vonk JA, Kraak MHS (2020) Herbicide exposure and toxicity to aquatic primary producers. Rev Environ Contam Toxicol 250:119–171. https://doi.org/10.1007/398_2020_48 . In: DeVoogt P (ed)
doi: 10.1007/398_2020_48
Watts C, Thornburrow D, Cave V (2016) Responses of invertebrates to herbicide in Salix cinerea invaded wetlands: restoration implications. Ecol Manag Restor 17:243–249. https://doi.org/10.1111/emr.12223
doi: 10.1111/emr.12223
Wojciechowicz-Zytko E, Wilk E (2019) Effects of surrounding environment and management system in apple orchards on the occurrence of ground beetles. Pol J Environ Stud 28:3489–3496. https://doi.org/10.15244/pjoes/9405
doi: 10.15244/pjoes/9405
Yale RL, Sapp M, Sinclair CJ, Moir JWB (2017) Microbial changes linked to the accelerated degradation of the herbicide atrazine in a range of temperate soils. Environ Sci Pollut Res 24:7359–7374. https://doi.org/10.1007/s11356-017-8377-y
doi: 10.1007/s11356-017-8377-y