Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Lawsonia inermis Against Common Pathogens from Urinary Tract Infection.
Antibacterial activity
Lawsonia inermis Linn.
Silver nanoparticles
Urinary tract infection
Journal
Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561
Informations de publication
Date de publication:
26 Apr 2023
26 Apr 2023
Historique:
accepted:
11
04
2023
medline:
26
4
2023
pubmed:
26
4
2023
entrez:
26
4
2023
Statut:
aheadofprint
Résumé
New and creative methodologies for the fabrication of silver nanoparticles (Ag-NPs), which are exploited in a wide range of consumer items, are of significant interest. Hence, this research emphasizes the biological approach of Ag-NPs through Egyptian henna leaves (Lawsonia inermis Linn.) extracts and analysis of the prepared Ag-NPs. Plant extract components were identified by gas chromatography mass spectrometry (GC-mass). The analyses of prepared Ag-NPs were carried out through UV-visible (UV-Vis), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and Fourier transform infrared (FTIR) analysis. UV-Vis reveals that Ag-NPs have a maximum peak at 460 nm in visible light. Structural characterization recorded peaks that corresponded to Bragg's diffractions for silver nano-crystal, with average crystallite sizes varying from 28 to 60 nm. Antibacterial activities of Ag-NPs were examined, and it is observed that all microorganisms are very sensitive to biologically synthesized Ag-NPs.
Identifiants
pubmed: 37099124
doi: 10.1007/s12010-023-04482-1
pii: 10.1007/s12010-023-04482-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s).
Références
Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans.” Frontiers in Microbiology, 9, 1441.
doi: 10.3389/fmicb.2018.01441
pubmed: 30013539
pmcid: 6036605
Nadeem, S. F., Gohar, U. F., Tahir, S. F., Mukhtar, H., Pornpukdeewattana, S., Nukthamna, P., Moula Ali, A. M., Bavisetty, S. C. B., & Massa, S. (2020). Antimicrobial resistance: More than 70 years of war between humans and bacteria. Critical Reviews in Microbiology, 46(5), 578–599.
doi: 10.1080/1040841X.2020.1813687
pubmed: 32954887
Hollyer, I., & Ison, M. G. (2018). The challenge of urinary tract infections in renal transplant recipients. Transplant Infectious Disease, 20(2), e12828. https://doi.org/10.1111/tid.12828
doi: 10.1111/tid.12828
pubmed: 29272071
Metwaly, A. M., Ghoneim, M. M., Eissa, I. H., Elsehemy, I. A., Mostafa, A. E., Hegazy, M. M., Afifi, W. M., & Dou, D. (2021). Traditional ancient Egyptian medicine: A review. Saudi journal of biological sciences, 28(10), 5823–5832.
doi: 10.1016/j.sjbs.2021.06.044
pubmed: 34588897
pmcid: 8459052
Muhammad H, Muhammad S (2005) The use of Lawsonia inermis Linn.(henna) in the management of burn wound infections. African Journal of Biotechnology 4 (9)
Avci, H., Monticello, R., & Kotek, R. (2013). Preparation of antibacterial PVA and PEO nanofibers containing Lawsonia Inermis (henna) leaf extracts. Journal of Biomaterials Science, Polymer Edition, 24(16), 1815–1830. https://doi.org/10.1080/09205063.2013.804758
doi: 10.1080/09205063.2013.804758
pubmed: 23758488
Singh, D. K., Luqman, S., & Mathur, A. K. (2015). Lawsonia inermis L. – A commercially important primaeval dying and medicinal plant with diverse pharmacological activity: A review. Industrial Crops and Products, 65, 269–286. https://doi.org/10.1016/j.indcrop.2014.11.025
doi: 10.1016/j.indcrop.2014.11.025
Barani, M., Mirzaei, M., Torkzadeh-Mahani, M., & Nematollahi, M. H. (2018). Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast cancer cell line: A nano-herbal treatment for cancer. DARU Journal of Pharmaceutical Sciences, 26(1), 11–17. https://doi.org/10.1007/s40199-018-0207-3
doi: 10.1007/s40199-018-0207-3
pubmed: 30159762
pmcid: 6154483
Rehman, F.-u, Adeel, S., Qaiser, S., Bhatti, I. A., Shahid, M., & Zuber, M. (2012). Dyeing behaviour of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves (Lawsonia inermis). Radiation Physics and Chemistry, 81(11), 1752–1756.
doi: 10.1016/j.radphyschem.2012.06.013
Khan, B. A., Khan, A., Khan, M. K., & Braga, V. A. (2021). Preparation and properties of high sheared poly (vinyl alcohol)/chitosan blended hydrogels films with Lawsonia inermis extract as wound dressing. Journal of Drug Delivery Science and Technology, 61, 102227.
doi: 10.1016/j.jddst.2020.102227
Hsouna, A. B., Trigui, M., Culioli, G., Blache, Y., & Jaoua, S. (2011). Antioxidant constituents from Lawsonia inermis leaves: Isolation, structure elucidation and antioxidative capacity. Food Chemistry, 125(1), 193–200.
doi: 10.1016/j.foodchem.2010.08.060
Salem, S. S., Hammad, E. N., Mohamed, A. A., & El-Dougdoug, W. (2023). A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Research in Applied Chemistry, 13(1), 41. https://doi.org/10.33263/BRIAC131.041
doi: 10.33263/BRIAC131.041
Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research, 199(1), 344–370. https://doi.org/10.1007/s12011-020-02138-3
doi: 10.1007/s12011-020-02138-3
pubmed: 32377944
AbdElkodous, M., El-Husseiny, H. M., El-Sayyad, G. S., Hashem, A. H., Doghish, A. S., Elfadil, D., Radwan, Y., El-Zeiny, H. M., Bedair, H., & Ikhdair, O. A. (2021). Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnology Reviews, 10(1), 1662–1739.
doi: 10.1515/ntrev-2021-0099
Shehabeldine, A. M., Hashem, A. H., Wassel, A. R., & Hasanin, M. (2022). Antimicrobial and antiviral activities of durable cotton fabrics treated with nanocomposite based on zinc oxide nanoparticles, acyclovir, nanochitosan, and clove oil. Applied Biochemistry and Biotechnology, 194(2), 783–800. https://doi.org/10.1007/s12010-021-03649-y
doi: 10.1007/s12010-021-03649-y
pubmed: 34541623
Hasanin M, Hashem AH, Lashin I, Hassan SAM (2021) In vitro improvement and rooting of banana plantlets using antifungal nanocomposite based on myco-synthesized copper oxide nanoparticles and starch. Biomass Conversion and Biorefinery https://doi.org/10.1007/s13399-021-01784-4
Shehabeldine, A. M., Salem, S. S., Ali, O. M., Abd-Elsalam, K. A., Elkady, F. M., & Hashem, A. H. (2022). Multifunctional silver nanoparticles based on chitosan: Antibacterial, antibiofilm, antifungal, antioxidant, and wound-healing activities. Journal of Fungi, 8(6), 612.
doi: 10.3390/jof8060612
pubmed: 35736095
pmcid: 9225580
Elbasuney, S., El-Sayyad, G. S., Tantawy, H., & Hashem, A. H. (2021). Promising antimicrobial and antibiofilm activities of reduced graphene oxide-metal oxide (RGO-NiO, RGO-AgO, and RGO-ZnO) nanocomposites. RSC advances, 11(42), 25961–25975.
doi: 10.1039/D1RA04542C
pubmed: 35479482
pmcid: 9037130
Salem, S. S., Hashem, A. H., Sallam, A. A. M., Doghish, A. S., Al-Askar, A. A., Arishi, A. A., & Shehabeldine, A. M. (2022). Synthesis of silver nanocomposite based on carboxymethyl cellulose: Antibacterial, antifungal and anticancer activities. Polymers, 14(16), 3352. https://doi.org/10.3390/polym14163352
doi: 10.3390/polym14163352
pubmed: 36015608
pmcid: 9412901
El-Naggar, M. E., Hasanin, M., & Hashem, A. H. (2022). Eco-friendly synthesis of superhydrophobic antimicrobial film based on cellulose acetate/polycaprolactone loaded with the green biosynthesized copper nanoparticles for food packaging application. Journal of Polymers and the Environment, 30(5), 1820–1832. https://doi.org/10.1007/s10924-021-02318-9
doi: 10.1007/s10924-021-02318-9
Ali OM, Hasanin MS, Suleiman WB, Helal EE-H, Hashem AH (2022) Green biosynthesis of titanium dioxide quantum dots using watermelon peel waste: Antimicrobial, antioxidant, and anticancer activities. Biomass Conversion and Biorefinery https://doi.org/10.1007/s13399-022-02772-y
Salem, S. S., Badawy, M. S. E., Al-Askar, A. A., Arishi, A. A., Elkady, F. M., & Hashem, A. H. (2022). Green biosynthesis of selenium nanoparticles using orange peel waste: Characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life, 12(6), 893.
doi: 10.3390/life12060893
pubmed: 35743924
pmcid: 9227136
Hashem, A. H., & Salem, S. S. (2022). Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnology Journal, 17(2), 2100432. https://doi.org/10.1002/biot.202100432
doi: 10.1002/biot.202100432
lashin I, Hasanin M, Hassan SAM, Hashem AH (2021) Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of Ziziphus spina-christi: Characterization, antimicrobial, and antioxidant activity. Biomass Conversion and Biorefinery https://doi.org/10.1007/s13399-021-01873-4
Abdelaziz, A. M., Salem, S. S., Khalil, A. M. A., El-Wakil, D. A., Fouda, H. M., & Hashem, A. H. (2022). Potential of biosynthesized zinc oxide nanoparticles to control Fusarium wilt disease in eggplant (Solanum melongena) and promote plant growth. BioMetals, 35(3), 601–616. https://doi.org/10.1007/s10534-022-00391-8
doi: 10.1007/s10534-022-00391-8
pubmed: 35359198
pmcid: 9174326
Shehabeldine, A. M., Amin, B. H., Hagras, F. A., Ramadan, A. A., Kamel, M. R., Ahmed, M. A., Atia, K. H., & Salem, S. S. (2023). Potential antimicrobial and antibiofilm properties of copper oxide nanoparticles: Time-kill kinetic essay and ultrastructure of pathogenic bacterial cells. Applied Biochemistry and Biotechnology, 195(1), 467–485. https://doi.org/10.1007/s12010-022-04120-2
doi: 10.1007/s12010-022-04120-2
pubmed: 36087233
Hammad, E. N., Salem, S. S., Mohamed, A. A., & El-Dougdoug, W. (2022). Environmental impacts of ecofriendly iron oxide nanoparticles on dyes removal and antibacterial activity. Applied Biochemistry and Biotechnology, 194(12), 6053–6067. https://doi.org/10.1007/s12010-022-04105-1
doi: 10.1007/s12010-022-04105-1
pubmed: 35881227
pmcid: 9708750
Salem, S. S., El-Belely, E. F., Niedbała, G., Alnoman, M. M., Hassan, S. E. D., Eid, A. M., Shaheen, T. I., Elkelish, A., & Fouda, A. (2020). Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials, 10(10), 1–20. https://doi.org/10.3390/nano10102082
doi: 10.3390/nano10102082
Salem, S. S. (2022). Bio-fabrication of selenium nanoparticles using baker’s yeast extract and its antimicrobial efficacy on food borne pathogens. Applied Biochemistry and Biotechnology, 194(5), 1898–1910. https://doi.org/10.1007/s12010-022-03809-8
doi: 10.1007/s12010-022-03809-8
pubmed: 34994951
Abdelghany, T. M., Al-Rajhi, A. M. H., Yahya, R., Bakri, M. M., Al Abboud, M. A., Yahya, R., Qanash, H., Bazaid, A. S., & Salem, S. S. (2023). Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Conversion and Biorefinery, 13(1), 417–430. https://doi.org/10.1007/s13399-022-03412-1
doi: 10.1007/s13399-022-03412-1
Al-Zahrani, F. A. M., Salem, S. S., Al-Ghamdi, H. A., Nhari, L. M., Lin, L., & El-Shishtawy, R. M. (2022). Green synthesis and antibacterial activity of Ag/Fe2O3 nanocomposite using Buddleja lindleyana extract. Bioengineering, 9(9), 452. https://doi.org/10.3390/bioengineering9090452
doi: 10.3390/bioengineering9090452
pubmed: 36134998
pmcid: 9495838
Soliman MKY, Abu-Elghait M, Salem SS, Azab MS (2022) Multifunctional properties of silver and gold nanoparticles synthesis by Fusarium pseudonygamai. Biomass Conversion and Biorefinery https://doi.org/10.1007/s13399-022-03507-9
Mohamed, A. A., Abu-Elghait, M., Ahmed, N. E., & Salem, S. S. (2021). Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biological Trace Element Research, 199(7), 2788–2799. https://doi.org/10.1007/s12011-020-02369-4
doi: 10.1007/s12011-020-02369-4
pubmed: 32895893
Hashem, A. H., Saied, E., Amin, B. H., Alotibi, F. O., Al-Askar, A. A., Arishi, A. A., Elkady, F. M., & Elbahnasawy, M. A. (2022). Antifungal activity of biosynthesized silver nanoparticles (AgNPs) against aspergilli causing aspergillosis: Ultrastructure Study. Journal of Functional Biomaterials, 13(4), 242.
doi: 10.3390/jfb13040242
pubmed: 36412883
pmcid: 9680418
Basta, A. H., El-Saied, H., Hasanin, M. S., & El-Deftar, M. M. (2018). Green carboxymethyl cellulose-silver complex versus cellulose origins in biological activity applications. International journal of biological macromolecules, 107, 1364–1372.
doi: 10.1016/j.ijbiomac.2017.11.061
pubmed: 29155155
Emam, M., Soliman, M. M., Eisa, W. H., & Hasanin, M. (2022). Solid and liquid green Ag nanoparticles based on banana peel extract as an eco-friendly remedy for ringworm in pets. Surface and Interface Analysis, 54(6), 607–618.
doi: 10.1002/sia.7073
Sharaf MH, Nagiub AM, Salem SS, Kalaba MH, El Fakharany EM, Abd El-Wahab H (2022) A new strategy to integrate silver nanowires with waterborne coating to improve their antimicrobial and antiviral properties. Pigment and Resin Technology https://doi.org/10.1108/PRT-12-2021-0146
Soliman, M. K. Y., Salem, S. S., Abu-Elghait, M., & Azab, M. S. (2023). Biosynthesis of silver and gold nanoparticles and their efficacy towards antibacterial, antibiofilm, cytotoxicity, and antioxidant activities. Applied Biochemistry and Biotechnology, 195(2), 1158–1183. https://doi.org/10.1007/s12010-022-04199-7
doi: 10.1007/s12010-022-04199-7
pubmed: 36342621
Lakkim, V., Reddy, M. C., Pallavali, R. R., Reddy, K. R., Reddy, C. V., Bilgrami, A. L., & Lomada, D. (2020). Green synthesis of silver nanoparticles and evaluation of their antibacterial activity against multidrug-resistant bacteria and wound healing efficacy using a murine model. Antibiotics, 9(12), 902.
doi: 10.3390/antibiotics9120902
pubmed: 33322213
pmcid: 7763323
Yousef A, Abu-Elghait M, Barghoth MG, Elazzazy AM, Desouky SE (2022) Fighting multidrug-resistant Enterococcus faecalis via interfering with virulence factors using green synthesized nanoparticles. Microbial Pathogenesis 173. https://doi.org/10.1016/j.micpath.2022.105842
Al-Zahrani FAM, Al-Zahrani NA, Al-Ghamdi SN, Lin L, Salem SS, El-Shishtawy RM (2022) Synthesis of Ag/Fe2O3 nanocomposite from essential oil of ginger via green method and its bactericidal activity. Biomass Conversion and Biorefinery https://doi.org/10.1007/s13399-022-03248-9
Hasanin, M. S., Emam, M., Soliman, M. M., Latif, R. R. A., Salem, M. M., El Raey, M. A., & Eisa, W. H. (2022). Green silver nanoparticles based on Lavandula coronopifolia aerial parts extract against mycotic mastitis in cattle. Biocatalysis and Agricultural Biotechnology, 42, 102350.
doi: 10.1016/j.bcab.2022.102350
Elsayed, H., Hasanin, M., & Rehan, M. (2021). Enhancement of multifunctional properties of leather surface decorated with silver nanoparticles (Ag NPs). Journal of Molecular Structure, 1234, 130130.
doi: 10.1016/j.molstruc.2021.130130
Hasanin, M., Elbahnasawy, M. A., Shehabeldine, A. M., & Hashem, A. H. (2021). Ecofriendly preparation of silver nanoparticles-based nanocomposite stabilized by polysaccharides with antibacterial, antifungal and antiviral activities. BioMetals, 34, 1313–1328.
doi: 10.1007/s10534-021-00344-7
pubmed: 34564808
pmcid: 8475443
Prakash, P., Gnanaprakasam, P., Emmanuel, R., Arokiyaraj, S., & Saravanan, M. (2013). Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids and Surfaces B: Biointerfaces, 108, 255–259.
doi: 10.1016/j.colsurfb.2013.03.017
pubmed: 23563291
Said, A., El-Gamal, M. S., Abu-Elghait, M., & Salem, S. S. (2021). Isolation, identification and antibiotic susceptibility pattern of urinary tract infection bacterial isolates. Lett Appl NanoBioSci, 10, 2820–2830.
doi: 10.33263/LIANBS104.28202830
Adeli-Sardou, M., Yaghoobi, M. M., Torkzadeh-Mahani, M., & Dodel, M. (2019). Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration. International journal of biological macromolecules, 124, 478–491.
doi: 10.1016/j.ijbiomac.2018.11.237
pubmed: 30500508
Singh, M., Kaur, M., Dangi, C., & Singh, H. (2014). Phytochemical & TLC profile of Lawsonia inermis (Heena). International Journal for Pharmaceutical Research Scholars, 3(1), 624–634.
Wagini, N. H., Soliman, A. S., Abbas, M. S., Hanafy, Y. A., & Badawy, E.-S.M. (2014). Phytochemical analysis of Nigerian and Egyptian henna (Lawsonia inermis L.) leaves using TLC. FTIR and GCMS. Plant, 2(3), 27–32.
doi: 10.11648/j.plant.20140203.11
Ajitha, B., Reddy, Y. A. K., Reddy, P. S., Suneetha, Y., Jeon, H.-J., & Ahn, C. W. (2016). Instant biosynthesis of silver nanoparticles using Lawsonia inermis leaf extract: Innate catalytic, antimicrobial and antioxidant activities. Journal of molecular liquids, 219, 474–481.
doi: 10.1016/j.molliq.2016.03.041
Marimuthu, S., Rahuman, A. A., Santhoshkumar, T., Jayaseelan, C., Kirthi, A. V., Bagavan, A., Kamaraj, C., Elango, G., Zahir, A. A., Rajakumar, G., & Velayutham, K. (2012). Lousicidal activity of synthesized silver nanoparticles using Lawsonia inermis leaf aqueous extract against Pediculus humanus capitis and Bovicola ovis. Parasitology Research, 111(5), 2023–2033. https://doi.org/10.1007/s00436-011-2667-y
doi: 10.1007/s00436-011-2667-y
pubmed: 21993881
Alhomaidi, E., Jasim, S. A., Amin, H. I. M., Lima Nobre, M. A., Khatami, M., Jalil, A. T., & Hussain Dilfy, S. (2022). Biosynthesis of silver nanoparticles using Lawsonia inermis and their biomedical application. IET nanobiotechnology, 16(7–8), 284–294.
doi: 10.1049/nbt2.12096
pubmed: 36039655
pmcid: 9469786
Daghian, S. G., Farahpour, M. R., & Jafarirad, S. (2021). Biological fabrication and electrostatic attractions of new layered silver/talc nanocomposite using Lawsonia inermis L. and its chitosan-capped inorganic/organic hybrid: Investigation on acceleration of Staphylococcus aureus and Pseudomonas aeruginosa infected wound healing. Materials Science and Engineering: C, 128, 112294. https://doi.org/10.1016/j.msec.2021.112294
doi: 10.1016/j.msec.2021.112294
pubmed: 34474845
Labulo, A. H., David, O. A., & Terna, A. D. (2022). Green synthesis and characterization of silver nanoparticles using Morinda lucida leaf extract and evaluation of its antioxidant and antimicrobial activity. Chemical Papers, 76(12), 7313–7325. https://doi.org/10.1007/s11696-022-02392-w
doi: 10.1007/s11696-022-02392-w
pubmed: 35992611
Aminul Haque, M., Shamim Hossain, M., Akanda, M. R., Haque, M. A., & Naher, S. (2019). Procedure optimization of Limonia acidissima leaf extraction and silver nanoparticle synthesis for prominent antibacterial activity. ChemistrySelect, 4(48), 14276–14280. https://doi.org/10.1002/slct.201904019
doi: 10.1002/slct.201904019
Aref MS, Salem SS (2020) Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology 27. https://doi.org/10.1016/j.bcab.2020.101689
Salem, S. S., Ali, O. M., Reyad, A. M., Abd-Elsalam, K. A., & Hashem, A. H. (2022). Pseudomonas indica-mediated silver nanoparticles: Antifungal and antioxidant biogenic tool for suppressing Mucormycosis fungi. Journal of Fungi, 8(2), 126. https://doi.org/10.3390/jof8020126
doi: 10.3390/jof8020126
pubmed: 35205879
pmcid: 8874487
Al-Rajhi AMH, Salem SS, Alharbi AA, Abdelghany TM (2022) Ecofriendly synthesis of silver nanoparticles using Kei-apple (Dovyalis caffra) fruit and their efficacy against cancer cells and clinical pathogenic microorganisms. Arabian Journal of Chemistry 15 (7). doi: https://doi.org/10.1016/j.arabjc.2022.103927
Salem, S. S. (2022). Baker’s yeast-mediated silver nanoparticles: Characterisation and antimicrobial biogenic tool for suppressing pathogenic microbes. BioNanoScience, 12(4), 1220–1229. https://doi.org/10.1007/s12668-022-01026-5
doi: 10.1007/s12668-022-01026-5
Elakraa, A. A., Salem, S. S., El-Sayyad, G. S., & Attia, M. S. (2022). Cefotaxime incorporated bimetallic silver-selenium nanoparticles: Promising antimicrobial synergism, antibiofilm activity, and bacterial membrane leakage reaction mechanism. RSC Advances, 12(41), 26603–26619. https://doi.org/10.1039/d2ra04717a
doi: 10.1039/d2ra04717a
pubmed: 36275140
pmcid: 9486975
Salem, S. S. (2023). A mini review on green nanotechnology and its development in biological effects. Arch Microbiol 205, 128. https://doi.org/10.1007/s00203-023-03467-2
Alsharif, S. M., Salem, S. S., Abdel-Rahman, M. A., Fouda, A., Eid, A. M., Hassan, S. E .D., Awad, M. A., & Mohamed, A. A. (2020). Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa. Heliyon, 6(5), p.e03943.
Eid, A. M., Fouda, A., Niedbała, G., Hassan, S. E. D., Salem, S. S., Abdo, A. M., F. Hetta, H., & Shaheen, T. I. (2020). Endophytic streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties. Antibiotics, 9(10), 641.