In vivo imaging of the phagocytic dynamics underlying efficient clearance of adult-born hippocampal granule cells by ramified microglia.
adult neurogenesis
hippocampus
in vivo imaging
microglia
phagocytosis
Journal
Glia
ISSN: 1098-1136
Titre abrégé: Glia
Pays: United States
ID NLM: 8806785
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
revised:
05
04
2023
received:
11
02
2023
accepted:
14
04
2023
medline:
13
6
2023
pubmed:
27
4
2023
entrez:
27
4
2023
Statut:
ppublish
Résumé
The phagocytosis of dead cells by microglia is essential in brain development and homeostasis. However, the mechanism underlying the efficient removal of cell corpses by ramified microglia remains poorly understood. Here, we investigated the phagocytosis of dead cells by ramified microglia in the hippocampal dentate gyrus, where adult neurogenesis and homeostatic cell clearance occur. Two-color imaging of microglia and apoptotic newborn neurons revealed two important characteristics. Firstly, frequent environmental surveillance and rapid engulfment reduced the time required for dead cell clearance. The motile microglial processes frequently contacted and enwrapped apoptotic neurons at the protrusion tips and completely digested them within 3-6 h of the initial contact. Secondly, while a single microglial process engaged in phagocytosis, the remaining processes continued environmental surveillance and initiated the removal of other dead cells. The simultaneous removal of multiple dead cells increases the clearance capacity of a single microglial cell. These two characteristics of ramified microglia contributed to their phagocytic speed and capacity, respectively. Consistently, the cell clearance rate was estimated to be 8-20 dead cells/microglia/day, supporting the efficiency of removing apoptotic newborn neurons. We concluded that ramified microglia specialize in utilizing individual motile processes to detect stochastic cell death events and execute parallel phagocytoses.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2005-2023Informations de copyright
© 2023 The Authors. GLIA published by Wiley Periodicals LLC.
Références
Abiega, O., Beccari, S., Diaz-Aparicio, I., Nadjar, A., Layé, S., Leyrolle, Q., Gómez-Nicola, D., Domercq, M., Pérez-Samartín, A., Sánchez-Zafra, V., Paris, I., Valero, J., Savage, J. C., Hui, C. W., Tremblay, M. È., Deudero, J. J. P., Brewster, A. L., Anderson, A. E., Zaldumbide, L., … Sierra, A. (2016). Neuronal hyperactivity disturbs ATP microgradients, impairs microglial motility, and reduces phagocytic receptor expression triggering apoptosis/microglial phagocytosis uncoupling. PLoS Biology, 14(5), e1002466. https://doi.org/10.1371/JOURNAL.PBIO.1002466
Amrein, I., Isler, K., & Lipp, H. P. (2011). Comparing adult hippocampal neurogenesis in mammalian species and orders: Influence of chronological age and life history stage. The European Journal of Neuroscience, 34(6), 978-987. https://doi.org/10.1111/J.1460-9568.2011.07804.X
Arandjelovic, S., & Ravichandran, K. S. (2015). Phagocytosis of apoptotic cells in homeostasis. Nature Immunology, 16(9), 907-917. https://doi.org/10.1038/ni.3253
Barois, N., De Saint-Vis, B., Lebecque, S., Geuze, H. J., & Kleijmeer, M. J. (2002). MHC class II compartments in human dendritic cells undergo profound structural changes upon activation. Traffic, 3(12), 894-905. https://doi.org/10.1034/J.1600-0854.2002.31205.X
Bernier, L. P., Bohlen, C. J., York, E. M., Choi, H. B., Kamyabi, A., Dissing-Olesen, L., Hefendehl, J. K., Collins, H. Y., Stevens, B., Barres, B. A., & MacVicar, B. A. (2019). Nanoscale surveillance of the brain by microglia via cAMP-regulated filopodia. Cell Reports, 27(10), 2895-2908. https://doi.org/10.1016/J.CELREP.2019.05.010
Borst, K., Dumas, A. A., & Prinz, M. (2021). Microglia: Immune and non-immune functions. Immunity, 54(10), 2194-2208. https://doi.org/10.1016/J.IMMUNI.2021.09.014
Brown, G. C., & Neher, J. J. (2014). Microglial phagocytosis of live neurons. Nature Reviews. Neuroscience, 15(4), 209-216. https://doi.org/10.1038/NRN3710
Butler, C. A., Popescu, A. S., Kitchener, E. J. A., Allendorf, D. H., Puigdellívol, M., & Brown, G. C. (2021). Microglial phagocytosis of neurons in neurodegeneration, and its regulation. Journal of Neurochemistry, 158(3), 621-639. https://doi.org/10.1111/JNC.15327
Butovsky, O., & Weiner, H. L. (2018). Microglial signatures and their role in health and disease. Nature Reviews. Neuroscience, 19(10), 622-635. https://doi.org/10.1038/S41583-018-0057-5
Chistiakov, D. A., Killingsworth, M. C., Myasoedova, V. A., Orekhov, A. N., & Bobryshev, Y. V. (2017). CD68/macrosialin: Not just a histochemical marker. Laboratory Investigation: A Journal of Technical Methods and Pathology, 97(1), 4-13. https://doi.org/10.1038/LABINVEST.2016.116
Cunningham, C. L., Martínez-Cerdeño, V., & Noctor, S. C. (2013). Microglia regulate the number of neural precursor cells in the developing cerebral cortex. Journal of Neuroscience, 33(10), 4216-4233. https://doi.org/10.1523/JNEUROSCI.3441-12.2013
Danielson, N. B., Turi, G. F., Ladow, M., Chavlis, S., Petrantonakis, P. C., Poirazi, P., & Losonczy, A. (2017). In vivo imaging of dentate gyrus mossy cells in behaving mice. Neuron, 93(3), 552-559.e4. https://doi.org/10.1016/J.NEURON.2016.12.019
Danielson, N. B. B., Kaifosh, P., Zaremba, J. D. D., Lovett-Barron, M., Tsai, J., Denny, C. A. A., Balough, E. M. M., Goldberg, A. R. R., Drew, L. J. J., Hen, R., Losonczy, A., & Kheirbek, M. A. A. (2016). Distinct contribution of adult-born hippocampal granule cells to context encoding. Neuron, 90(1), 101-112. https://doi.org/10.1016/J.NEURON.2016.02.019
Darland-Ransom, M., Wang, X., Sun, C. L., Mapes, J., Gengyo-Ando, K., Mitani, S., & Xue, D. (2008). Role of C. elegans TAT-1 protein in maintaining plasma membrane phosphatidylserine asymmetry. Science, 320(5875), 528-531. https://doi.org/10.1126/science.1155847
Das, R., & Chinnathambi, S. (2020). Actin-mediated microglial chemotaxis via G-protein coupled purinergic receptor in Alzheimer's disease. Neuroscience, 448, 325-336. https://doi.org/10.1016/J.NEUROSCIENCE.2020.09.024
Davalos, D., Grutzendler, J., Yang, G., Kim, J. v., Zuo, Y., Jung, S., Littman, D. R., Dustin, M. L., & Gan, W. B. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 8(6), 752-758. https://doi.org/10.1038/NN1472
Diaz-Aparicio, I., Paris, I., Sierra-Torre, V., Plaza-Zabala, A., Rodríguez-Iglesias, N., Márquez-Ropero, M., Beccari, S., Huguet, P., Abiega, O., Alberdi, E., Matute, C., Bernales, I., Schulz, A., Otrokocsi, L., Sperlagh, B., Happonen, K. E., Lemke, G., Maletic-Savatic, M., Valero, J., & Sierra, A. (2020). Microglia actively remodel adult hippocampal neurogenesis through the phagocytosis secretome. The Journal of Neuroscience, 40(7), 1453-1482. https://doi.org/10.1523/JNEUROSCI.0993-19.2019
Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., & Henson, P. M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. Journal of Immunology (Baltimore, Md: 1950), 148(7), 2207-2216.
Feng, G., Mellor, R., Bernstein, M., Keller-Peck, C., Nguyen, Q., Wallace, M., Nerbonne, J., Lichtman, J., & Sanes, J. (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 28(1), 41-51. https://doi.org/10.1016/S0896-6273(00)00084-2
Gardai, S. J., McPhillips, K. A., Frasch, S. C., Janssen, W. J., Starefeldt, A., Murphy-Ullrich, J. E., Bratton, D. L., Oldenborg, P. A., Michalak, M., & Henson, P. M. (2005). Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 123(2), 321-334. https://doi.org/10.1016/j.cell.2005.08.032
Ghose, P., & Shaham, S. (2020). Cell death in animal development. Development, 147(14), dev191882. https://doi.org/10.1242/DEV.191882
Gonçalves, J. T., Bloyd, C. W., Shtrahman, M., Johnston, S. T., Schafer, S. T., Parylak, S. L., Tran, T., Chang, T., & Gage, F. H. (2016). In vivo imaging of dendritic pruning in dentate granule cells. Nature Neuroscience, 19(6), 788-791. https://doi.org/10.1038/NN.4301
Hammond, T. R., Dufort, C., Dissing-Olesen, L., Giera, S., Young, A., Wysoker, A., Walker, A. J., Gergits, F., Segel, M., Nemesh, J., Marsh, S. E., Saunders, A., Macosko, E., Ginhoux, F., Chen, J., Franklin, R. J. M., Piao, X., McCarroll, S. A., & Stevens, B. (2019). Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity, 50(1), 253-271.e6. https://doi.org/10.1016/J.IMMUNI.2018.11.004
Hammond, T. R., Robinton, D., & Stevens, B. (2018). Microglia and the brain: Complementary partners in development and disease. Annual Review of Cell and Developmental Biology, 34, 523-544. https://doi.org/10.1146/ANNUREV-CELLBIO-100616-060509
Haynes, S. E., Hollopeter, G., Yang, G., Kurpius, D., Dailey, M. E., Gan, W. B., & Julius, D. (2006). The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nature Neuroscience, 9(12), 1512-1519. https://doi.org/10.1038/NN1805
Huangi, L., Jin, J., Chen, K., You, S., Zhang, H., Sideris, A., Norcini, M., Recio-Pinto, E., Wang, J., Gan, W. B., & Yang, G. (2021). BDNF produced by cerebral microglia promotes cortical plasticity and pain hypersensitivity after peripheral nerve injury. PLoS Biology, 19(7), e3001337. https://doi.org/10.1371/JOURNAL.PBIO.3001337
Imayoshi, I., Ohtsuka, T., Metzger, D., Chambon, P., & Kageyama, R. (2006). Temporal regulation of Cre recombinase activity in neural stem cells. Genesis, 44(5), 233-238. https://doi.org/10.1002/DVG.20212
Jung, S., Aliberti, J., Graemmel, P., Sunshine, M. J., Kreutzberg, G. W., Sher, A., & Littman, D. R. (2000). Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Molecular and Cellular Biology, 20(11), 4106-4114. https://doi.org/10.1128/MCB.20.11.4106-4114.2000
Kamei, R., Urata, S., Maruoka, H., & Okabe, S. (2022). In vivo chronic two-photon imaging of microglia in the mouse hippocampus. Journal of Visualized Experiments, (185), e64104. https://doi.org/10.3791/64104
Kettenmann, H., Hanisch, U. K., Noda, M., & Verkhratsky, A. (2011). Physiology of microglia. Physiological Reviews, 91(2), 461-553. https://doi.org/10.1152/PHYSREV.00011.2010
Kimoto, H., Eto, R., Abe, M., Kato, H., & Araki, T. (2009). Alterations of glial cells in the mouse hippocampus during postnatal development. Cellular and Molecular Neurobiology, 29(8), 1181-1189. https://doi.org/10.1007/S10571-009-9412-4
Kinchen, J. M., & Ravichandran, K. S. (2008). Phagosome maturation: going through the acid test. Nature Reviews: Molecular Cell Biology, 9(10), 781-795. https://doi.org/10.1038/NRM2515
Koizumi, S., Shigemoto-Mogami, Y., Nasu-Tada, K., Shinozaki, Y., Ohsawa, K., Tsuda, M., Joshi, B. v., Jacobson, K. A., Kohsaka, S., & Inoue, K. (2007). UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature, 446(7139), 1091-1095. https://doi.org/10.1038/nature05704
Kondo, S., Kohsaka, S., & Okabe, S. (2011). Long-term changes of spine dynamics and microglia after transient peripheral immune response triggered by LPS in vivo. Molecular Brain, 4, 27. https://doi.org/10.1186/1756-6606-4-27
Kuipers, S. D., Schroeder, J. E., & Trentani, A. (2015). Changes in hippocampal neurogenesis throughout early development. Neurobiology of Aging, 36(1), 365-379. https://doi.org/10.1016/J.NEUROBIOLAGING.2014.07.033
Luo, C., Koyama, R., & Ikegaya, Y. (2016). Microglia engulf viable newborn cells in the epileptic dentate gyrus. Glia, 64(9), 1508-1517. https://doi.org/10.1002/glia.23018
Madisen, L., Zwingman, T. A., Sunkin, S. M., Oh, S. W., Zariwala, H. A., Gu, H., Ng, L. L., Palmiter, R. D., Hawrylycz, M. J., Jones, A. R., Lein, E. S., & Zeng, H. (2010). A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neuroscience, 13(1), 133-140. https://doi.org/10.1038/NN.2467
Madry, C., Kyrargyri, V., Arancibia-Cárcamo, I. L., Jolivet, R., Kohsaka, S., Bryan, R. M., & Attwell, D. (2018). Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron, 97(2), 299-312. https://doi.org/10.1016/J.NEURON.2017.12.002
Márquez-Ropero, M., Benito, E., Plaza-Zabala, A., & Sierra, A. (2020). Microglial corpse clearance: Lessons from macrophages. Frontiers in Immunology, 11, 506. https://doi.org/10.3389/FIMMU.2020.00506/PDF
Merlini, M., Rafalski, V. A., Ma, K., Kim, K. Y., Bushong, E. A., Rios Coronado, P. E., Yan, Z., Mendiola, A. S., Sozmen, E. G., Ryu, J. K., Haberl, M. G., Madany, M., Sampson, D. N., Petersen, M. A., Bardehle, S., Tognatta, R., Dean, T., Acevedo, R. M., Cabriga, B., … Akassoglou, K. (2021). Microglial Gi-dependent dynamics regulate brain network hyperexcitability. Nature Neuroscience, 24(1), 19-23. https://doi.org/10.1038/S41593-020-00756-7
Ming, G. L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 70(4), 687-702. https://doi.org/10.1016/J.NEURON.2011.05.001
Möller, K., Brambach, M., Villani, A., Gallo, E., Gilmour, D., & Peri, F. (2022). A role for the centrosome in regulating the rate of neuronal efferocytosis by microglia in vivo. eLife, 11, e82094. https://doi.org/10.7554/ELIFE.82094
Nicola, Z., Fabel, K., & Kempermann, G. (2015). Development of the adult neurogenic niche in the hippocampus of mice. Frontiers in Neuroanatomy, 9, 53. https://doi.org/10.3389/FNANA.2015.00053/PDF
Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308(5726), 1314-1318. https://doi.org/10.1126/SCIENCE.1110647
Nolte, C., Möller, T., Walter, T., & Kettenmann, H. (1996). Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the Actin cytoskeleton. Neuroscience, 73(4), 1091-1107. https://doi.org/10.1016/0306-4522(96)00106-6
Paolicelli, R. C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., Giustetto, M., Ferreira, T. A., Guiducci, E., Dumas, L., Ragozzino, D., & Gross, C. T. (2011). Synaptic pruning by microglia is necessary for normal brain development. Science, 333(6048), 1456-1458. https://doi.org/10.1126/science.1202529
Paolicelli, R. C., Sierra, A., Stevens, B., Tremblay, M. E., Aguzzi, A., Ajami, B., Amit, I., Audinat, E., Bechmann, I., Bennett, M., Bennett, F., Bessis, A., Biber, K., Bilbo, S., Blurton-Jones, M., Boddeke, E., Brites, D., Brône, B., Brown, G. C., … Wyss-Coray, T. (2022). Microglia states and nomenclature: A field at its crossroads. Neuron, 110(21), 3458-3483. https://doi.org/10.1016/J.NEURON.2022.10.020
Parkhurst, C. N., Yang, G., Ninan, I., Savas, J. N., Yates, J. R., Lafaille, J. J., Hempstead, B. L., Littman, D. R., & Gan, W. B. (2013). Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell, 155(7), 1596-1609. https://doi.org/10.1016/J.CELL.2013.11.030
Pauwels, A. M., Trost, M., Beyaert, R., & Hoffmann, E. (2017). Patterns, receptors, and signals: Regulation of phagosome maturation. Trends in Immunology, 38(6), 407-422. https://doi.org/10.1016/J.IT.2017.03.006
Pfisterer, U., & Khodosevich, K. (2017). Neuronal survival in the brain: Neuron type-specific mechanisms. Cell Death & Disease, 8(3), e2643. https://doi.org/10.1038/CDDIS.2017.64
Pillay, C. S., Elliott, E., & Dennison, C. (2002). Endolysosomal proteolysis and its regulation. The Biochemical Journal, 363(Pt 3), 417-429. https://doi.org/10.1042/0264-6021:3630417
Pilz, G. A., Carta, S., Stäuble, A., Ayaz, A., Jessberger, S., & Helmchen, F. (2016). Functional imaging of dentate granule cells in the adult mouse hippocampus. The Journal of Neuroscience, 36(28), 7407-7414. https://doi.org/10.1523/JNEUROSCI.3065-15.2016
Rabinowitz, S., Horstmann, H., Gordon, S., & Griffiths, G. (1992). Immunocytochemical characterization of the endocytic and phagolysosomal compartments in peritoneal macrophages. The Journal of Cell Biology, 116(1), 95-112. https://doi.org/10.1083/JCB.116.1.95
Savage, J. C., Carrier, M., & Tremblay, M. È. (2019). Morphology of microglia across contexts of health and disease. Methods in Molecular Biology, 2034, 13-26. https://doi.org/10.1007/978-1-4939-9658-2_2
Segawa, K., Kurata, S., Yanagihashi, Y., Brummelkamp, T. R., Matsuda, F., & Nagata, S. (2014). Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science, 344(6188), 1164-1168. https://doi.org/10.1126/science.1252809
Sierra, A., Encinas, J. M., Deudero, J. J. P., Chancey, J. H., Enikolopov, G., Overstreet-Wadiche, L. S., Tsirka, S. E., & Maletic-Savatic, M. (2010). Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell, 7(4), 483-495. https://doi.org/10.1016/J.STEM.2010.08.014
Stence, N., Waite, M., & Dailey, M. E. (2001). Dynamics of microglial activation: A confocal time-lapse analysis in hippocampal slices. Glia, 33(3), 256-266. https://doi.org/10.1002/1098-1136(200103)33:3<256::AID-GLIA1024>3.0.CO;2-J
Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2020). Cellpose: A generalist algorithm for cellular segmentation. Nature Methods, 18(1), 100-106. https://doi.org/10.1038/s41592-020-01018-x
Thion, M. S., Ginhoux, F., & Garel, S. (2018). Microglia and early brain development: An intimate journey. Science, 362(6411), 185-189. https://doi.org/10.1126/SCIENCE.AAT0474
Toda, T., Parylak, S. L., Linker, S. B., & Gage, F. H. (2019). The role of adult hippocampal neurogenesis in brain health and disease. Molecular Psychiatry, 24(1), 67-87. https://doi.org/10.1038/S41380-018-0036-2
Tremblay, M. È., Stevens, B., Sierra, A., Wake, H., Bessis, A., & Nimmerjahn, A. (2011). The role of microglia in the healthy brain. The Journal of Neuroscience, 31(45), 16064-16069. https://doi.org/10.1523/JNEUROSCI.4158-11.2011
Truman, L. A., Ford, C. A., Pasikowska, M., Pound, J. D., Wilkinson, S. J., Dumitriu, I. E., Melville, L., Melrose, L. A., Ogden, C. A., Nibbs, R., Graham, G., Combadiere, C., & Gregory, C. D. (2008). CX3CL 1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood, 112(13), 5026-5036. https://doi.org/10.1182/blood-2008-06-162404
VanRyzin, J. W., Marquardt, A. E., Argue, K. J., Vecchiarelli, H. A., Ashton, S. E., Arambula, S. E., Hill, M. N., & McCarthy, M. M. (2019). Microglial phagocytosis of newborn cells is induced by endocannabinoids and sculpts sex differences in juvenile rat social play. Neuron, 102(2), 435-449. https://doi.org/10.1016/J.NEURON.2019.02.006
Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S., & Nabekura, J. (2009). Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. The Journal of Neuroscience, 29(13), 3974-3980. https://doi.org/10.1523/JNEUROSCI.4363-08.2009
Wang, B. S., Bernardez Sarria, M. S., An, X., He, M., Alam, N. M., Prusky, G. T., Crair, M. C., & Huang, Z. J. (2021). Retinal and callosal activity-dependent chandelier cell elimination shapes binocularity in primary visual cortex. Neuron, 109(3), 502-515. https://doi.org/10.1016/J.NEURON.2020.11.004
Weinhard, L., di Bartolomei, G., Bolasco, G., Machado, P., Schieber, N. L., Neniskyte, U., Exiga, M., Vadisiute, A., Raggioli, A., Schertel, A., Schwab, Y., & Gross, C. T. (2018). Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nature Communications, 9(1), 1228. https://doi.org/10.1038/s41467-018-03566-5
Wilton, D. K., Dissing-Olesen, L., & Stevens, B. (2019). Neuron-glia signaling in synapse elimination. Annual Review of Neuroscience, 42, 107-127. https://doi.org/10.1146/ANNUREV-NEURO-070918-050306
Wong, F. K., & Marín, O. (2019). Developmental cell death in the cerebral cortex. Annual Review of Cell and Developmental Biology, 35, 523-542. https://doi.org/10.1146/ANNUREV-CELLBIO-100818-125204
Xu, H.-T., Pan, F., Yang, G., & Gan, W.-B. (2007). Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nature Neuroscience, 10(5), 549-551. https://doi.org/10.1038/nn1883
Yamaguchi, Y., & Miura, M. (2015). Programmed cell death in neurodevelopment. Developmental Cell, 32(4), 478-490. https://doi.org/10.1016/J.DEVCEL.2015.01.019
Yang, G., Pan, F., Parkhurst, C. N., Grutzendler, J., & Gan, W.-B. (2010). Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nature Protocols, 5(2), 201-208. https://doi.org/10.1038/nprot.2009.222
Zaidi, N., Maurer, A., Nieke, S., & Kalbacher, H. (2008). Cathepsin D: A cellular roadmap. Biochemical and Biophysical Research Communications, 376(1), 5-9. https://doi.org/10.1016/J.BBRC.2008.08.099