Uncovering temperature-dependent exciton-polariton relaxation mechanisms in hybrid organic-inorganic perovskites.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 Apr 2023
27 Apr 2023
Historique:
received:
14
09
2022
accepted:
30
03
2023
medline:
28
4
2023
pubmed:
28
4
2023
entrez:
27
4
2023
Statut:
epublish
Résumé
Hybrid perovskites have emerged as a promising material candidate for exciton-polariton (polariton) optoelectronics. Thermodynamically, low-threshold Bose-Einstein condensation requires efficient scattering to the polariton energy dispersion minimum, and many applications demand precise control of polariton interactions. Thus far, the primary mechanisms by which polaritons relax in perovskites remains unclear. In this work, we perform temperature-dependent measurements of polaritons in low-dimensional perovskite wedged microcavities achieving a Rabi splitting of [Formula: see text] = 260 ± 5 meV. We change the Hopfield coefficients by moving the optical excitation along the cavity wedge and thus tune the strength of the primary polariton relaxation mechanisms in this material. We observe the polariton bottleneck regime and show that it can be overcome by harnessing the interplay between the different excitonic species whose corresponding dynamics are modified by strong coupling. This work provides an understanding of polariton relaxation in perovskites benefiting from efficient, material-specific relaxation pathways and intracavity pumping schemes from thermally brightened excitonic species.
Identifiants
pubmed: 37105984
doi: 10.1038/s41467-023-37772-7
pii: 10.1038/s41467-023-37772-7
pmc: PMC10140020
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2426Subventions
Organisme : National Science Foundation (NSF)
ID : 1122374
Organisme : National Science Foundation (NSF)
ID : CHE-2108357
Organisme : National Science Foundation (NSF)
ID : 2108357
Organisme : U.S. Department of Energy (DOE)
ID : DE-SC0021650
Organisme : U.S. Department of Energy (DOE)
ID : DE-SC0021650
Organisme : U.S. Department of Energy (DOE)
ID : DE-SC0021650
Organisme : United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Laboratory (U.S. Army Research Laboratory)
ID : W911NF-18-2-0048
Organisme : United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Laboratory (U.S. Army Research Laboratory)
ID : W911NF-18-2-0048
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 802862
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 802862
Informations de copyright
© 2023. The Author(s).
Références
Nano Lett. 2018 Nov 14;18(11):6882-6891
pubmed: 30264571
Nat Commun. 2022 May 30;13(1):3001
pubmed: 35637218
Nano Lett. 2020 Jul 8;20(7):5141-5148
pubmed: 32459491
Phys Rev B Condens Matter. 1990 Dec 15;42(17):11099-11107
pubmed: 9995391
Sci Adv. 2019 May 31;5(5):eaav9967
pubmed: 31172027
J Chem Phys. 2021 Oct 21;155(15):154701
pubmed: 34686047
Nat Commun. 2021 Jun 9;12(1):3489
pubmed: 34108469
J Phys Chem Lett. 2019 Sep 5;10(17):5153-5159
pubmed: 31415177
Adv Mater. 2022 Jan;34(1):e2105263
pubmed: 34606138
Opt Express. 2013 May 20;21(10):12122-8
pubmed: 23736432
J Am Chem Soc. 2016 Oct 26;138(42):13798-13801
pubmed: 27706940
Nat Commun. 2019 Feb 8;10(1):673
pubmed: 30737402
Nature. 2009 Jan 15;457(7227):291-5
pubmed: 19148095
Nano Lett. 2021 Dec 8;21(23):10076-10085
pubmed: 34843262
ACS Nano. 2016 Mar 22;10(3):3356-64
pubmed: 26889780
Phys Rev Lett. 2019 Feb 1;122(4):047403
pubmed: 30768323
Phys Rev Lett. 2020 Dec 4;125(23):233603
pubmed: 33337197
Phys Rev Lett. 2015 Dec 18;115(25):257403
pubmed: 26722944
Nano Lett. 2021 Nov 24;21(22):9543-9550
pubmed: 34762431
Nat Commun. 2018 Jun 8;9(1):2254
pubmed: 29884900
Sci Adv. 2021 Nov 12;7(46):eabj6627
pubmed: 34757800
Adv Mater. 2020 Oct;32(40):e2003790
pubmed: 32881186
Nat Commun. 2013;4:1778
pubmed: 23653190
Nanoscale. 2018 Jan 3;10(2):646-656
pubmed: 29239445
J Phys Chem Lett. 2020 Dec 3;11(23):9975-9982
pubmed: 33180499
Nat Mater. 2021 Oct;20(10):1315-1324
pubmed: 34211156
Small. 2021 Sep;17(37):e2101527
pubmed: 34369068
Nano Lett. 2021 Mar 10;21(5):1903-1914
pubmed: 33435686
Nano Lett. 2022 Sep 14;22(17):7011-7019
pubmed: 36036573
Nat Commun. 2021 Apr 15;12(1):2269
pubmed: 33859179
Nat Commun. 2016 Oct 10;7:13078
pubmed: 27721454