Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases.


Journal

Nature reviews. Molecular cell biology
ISSN: 1471-0080
Titre abrégé: Nat Rev Mol Cell Biol
Pays: England
ID NLM: 100962782

Informations de publication

Date de publication:
08 2023
Historique:
accepted: 09 03 2023
medline: 24 7 2023
pubmed: 28 4 2023
entrez: 27 4 2023
Statut: ppublish

Résumé

Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.

Identifiants

pubmed: 37106071
doi: 10.1038/s41580-023-00604-z
pii: 10.1038/s41580-023-00604-z
pmc: PMC10134735
doi:

Substances chimiques

Lipid Bilayers 0
Phospholipids 0
Glycerophospholipids 0
Phosphatidylserines 0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

576-596

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2023. Springer Nature Limited.

Références

Vance, J. E. Phospholipid synthesis and transport in mammalian cells. Traffic 16, 1–18 (2015).
pubmed: 25243850 doi: 10.1111/tra.12230
Yang, Y., Lee, M. & Fairn, G. D. Phospholipid subcellular localization and dynamics. J. Biol. Chem. 293, 6230–6240 (2018).
pubmed: 29588369 doi: 10.1074/jbc.R117.000582 pmcid: 5925819
Bretscher, M. S. Asymmetrical lipid bilayer structure for biological membranes. Nat. N. Biol. 236, 11–12 (1972). This article reports the asymmetrical distribution of phospholipids in the plasma membrane by treating human erythrocytes or their membrane fraction with chemical reagents that specifically label amino groups.
doi: 10.1038/newbio236011a0
Tsuji, T. et al. Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proc. Natl Acad. Sci. USA 116, 13368–13373 (2019).
pubmed: 31217287 doi: 10.1073/pnas.1822025116 pmcid: 6613088
Murate, M. et al. Transbilayer distribution of lipids at nano scale. J. Cell Sci. 128, 1627–1638 (2015).
pubmed: 25673880
Clarke, R. J., Hossain, K. R. & Cao, K. Physiological roles of transverse lipid asymmetry of animal membranes. Biochim. Biophy. Acta, Biomembr. 1862, 183382 (2020).
doi: 10.1016/j.bbamem.2020.183382
Lorent, J. H. et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644–652 (2020).
pubmed: 32367017 doi: 10.1038/s41589-020-0529-6 pmcid: 7246138
Bevers, E. M. & Williamson, P. L. Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane. Physiol. Rev. 96, 605–645 (2016).
pubmed: 26936867 doi: 10.1152/physrev.00020.2015
Kobayashi, T. & Menon, A. K. Transbilayer lipid asymmetry. Curr. Biol. 28, R386–R391 (2018).
pubmed: 29689220 doi: 10.1016/j.cub.2018.01.007
Doktorova, M., Symons, J. L. & Levental, I. Structural and functional consequences of reversible lipid asymmetry in living membranes. Nat. Chem. Biol. 16, 1321–1330 (2020).
pubmed: 33199908 doi: 10.1038/s41589-020-00688-0 pmcid: 7747298
Meca, J. et al. Avidity-driven polarity establishment via multivalent lipid–GTPase module interactions. EMBO J. 38, e99652 (2019).
pubmed: 30559330 doi: 10.15252/embj.201899652
Nagata, S., Suzuki, J., Segawa, K. & Fujii, T. Exposure of phosphatidylserine on the cell surface. Cell Death Differ. 23, 952–961 (2016).
pubmed: 26891692 doi: 10.1038/cdd.2016.7 pmcid: 4987739
Coleman, J. A., Quazi, F. & Molday, R. S. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport. Biochim. Biophys. Acta 1831, 555–574 (2013).
pubmed: 23103747 doi: 10.1016/j.bbalip.2012.10.006
Palmgren, M., Østerberg, J. T., Nintemann, S. J., Poulsen, L. R. & López-Marqués, R. L. Evolution and a revised nomenclature of P4 ATPases, a eukaryotic family of lipid flippases. Biochim. Biophys. Acta, Biomembr. 1861, 1135–1151 (2019).
pubmed: 30802428 doi: 10.1016/j.bbamem.2019.02.006
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).
pubmed: 22745249 doi: 10.1126/science.1225829 pmcid: 6286148
Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).
pubmed: 28102262 doi: 10.1038/nature21350 pmcid: 5438464
Cheng, Y., Grigorieff, N., Penczek, Pawel, A. & Walz, T. A primer to single-particle cryo-electron microscopy. Cell 161, 438–449 (2015).
pubmed: 25910204 doi: 10.1016/j.cell.2015.03.050 pmcid: 4409659
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 doi: 10.1038/s41586-021-03819-2 pmcid: 8371605
Bretscher, M. S. Membrane structure: some general principles. Science 181, 622–629 (1973).
pubmed: 4724478 doi: 10.1126/science.181.4100.622
Leventis, P. A. & Grinstein, S. The distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 39, 407–427 (2010).
pubmed: 20192774 doi: 10.1146/annurev.biophys.093008.131234
Seigneuret, M. & Devaux, P. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc. Natl Acad. Sci. USA 81, 3751–3755 (1984).
pubmed: 6587389 doi: 10.1073/pnas.81.12.3751 pmcid: 345297
Auland, M., Roufogalis, B., Devaux, P. & Zachowski, A. Reconstitution of ATP-dependent aminophospholipid translocation in proteoliposomes. Proc. Natl Acad. Sci. USA 91, 10938–10942 (1994). This work purifies an ATPase from human erythrocyte membranes, and reconstitutes its flippase activity in proteoliposomes.
pubmed: 7971987 doi: 10.1073/pnas.91.23.10938 pmcid: 45141
Tang, X., Halleck, M. S., Schlegel, R. A. & Williamson, P. A subfamily of P-type ATPases with aminophospholipid transporting activity. Science 272, 1495–1497 (1996). This article reports the identification of mammalian P4-type ATPase (flippase) that transports amino phospholipids.
pubmed: 8633245 doi: 10.1126/science.272.5267.1495
Palmgren, M. G. & Nissen, P. P-type ATPases. Annu. Rev. Biophys. 40, 243–266 (2011).
pubmed: 21351879 doi: 10.1146/annurev.biophys.093008.131331
Segawa, K. et al. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 344, 1164–1168 (2014). This article reports that a P4-ATPase, ATP11C, is complexed with its chaperone, CDC50A, works as the flippase at the plasma membrane and is cleaved by caspase 3 when cells undergo apoptosis.
pubmed: 24904167 doi: 10.1126/science.1252809
Segawa, K., Kurata, S. & Nagata, S. Human type IV P-type ATPases that work as plasma membrane phospholipid flippases, and their regulation by caspase and calcium. J. Biol. Chem. 291, 762–772 (2016).
pubmed: 26567335 doi: 10.1074/jbc.M115.690727
Wang, J. et al. Proteomic analysis and functional characterization of P4-ATPase phospholipid flippases from murine tissues. Sci. Rep. 8, 10795 (2018).
pubmed: 30018401 doi: 10.1038/s41598-018-29108-z pmcid: 6050252
Coleman, J. A., Kwok, M. C. & Molday, R. S. Localization, purification, and functional reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine flippase in photoreceptor disc membranes. J. Biol. Chem. 284, 32670–32679 (2009).
pubmed: 19778899 doi: 10.1074/jbc.M109.047415 pmcid: 2781682
Lee, S. et al. Transport through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase. EMBO J. 34, 669–688 (2015).
pubmed: 25595798 doi: 10.15252/embj.201489703 pmcid: 4365035
Cheng, M.-T. et al. Structural insights into the activation of autoinhibited human lipid flippase ATP8B1 upon substrate binding. Proc. Natl Acad. Sci. USA 119, e2118656119 (2022).
pubmed: 35349344 doi: 10.1073/pnas.2118656119 pmcid: 9168909
Dieudonné, T. et al. Autoinhibition and regulation by phosphoinositides of ATP8B1, a human lipid flippase associated with intrahepatic cholestatic disorders. eLife 11, e75272 (2022).
pubmed: 35416773 doi: 10.7554/eLife.75272 pmcid: 9045818
Martin, S. et al. Mutated ATP10B increases Parkinson’s disease risk by compromising lysosomal glucosylceramide export. Acta Neuropathol. 139, 1001–1024 (2020).
pubmed: 32172343 doi: 10.1007/s00401-020-02145-7 pmcid: 7244618
Best, J. T., Xu, P. & Graham, T. R. Phospholipid flippases in membrane remodeling and transport carrier biogenesis. Curr. Opin. Cell Biol. 59, 8–15 (2019).
pubmed: 30897446 doi: 10.1016/j.ceb.2019.02.004 pmcid: 6726550
Takatsu, H. et al. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane. J. Biol. Chem. 289, 33543–33556 (2014).
pubmed: 25315773 doi: 10.1074/jbc.M114.593012
Naito, T. et al. Phospholipid flippase ATP10A translocates phosphatidylcholine and is involved in plasma membrane dynamics. J. Biol. Chem. 290, 15004–15017 (2015).
pubmed: 25947375 doi: 10.1074/jbc.M115.655191 pmcid: 4463445
Miyata, Y., Yamada, K., Nagata, S. & Segawa, K. Two types of type IV P-type ATPases independently re-establish the asymmetrical distribution of phosphatidylserine in plasma membranes. J. Biol. Chem. 298, 102527 (2022).
pubmed: 36162506 doi: 10.1016/j.jbc.2022.102527 pmcid: 9597894
Segawa, K. et al. Phospholipid flippases enable precursor B cells to flee engulfment by macrophages. Proc. Natl Acad. Sci. USA 115, 12212–12217 (2018).
pubmed: 30355768 doi: 10.1073/pnas.1814323115 pmcid: 6275493
Kornberg, R. D. & McConnell, H. M. Inside–outside transitions of phospholipids in vesicle membranes. Biochemistry 10, 1111–1120 (1971). Using the vesicular membrane of a lipid bilayer, this article describes that the lateral movement of phospholipids in the layer is fast, whereas the inside-out transition is prolonged.
pubmed: 4324203 doi: 10.1021/bi00783a003
Bevers, E. M., Comfurius, P. & Zwaal, R. F. Changes in membrane phospholipid distribution during platelet activation. Biochim. Biophys. Acta 736, 57–66 (1983).
pubmed: 6418205 doi: 10.1016/0005-2736(83)90169-4
Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).
pubmed: 17960135 doi: 10.1038/nature06307
Fadok, V. A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992). This article reports that PtdSer is exposed to the surface of apoptotic cells and is recognized by macrophages for engulfment.
pubmed: 1545126 doi: 10.4049/jimmunol.148.7.2207
Basse, F., Stout, J. G., Sims, P. J. & Wiedmer, T. Isolation of an erythrocyte membrane protein that mediates Ca
pubmed: 8663431 doi: 10.1074/jbc.271.29.17205
Bevers, E. M. & Williamson, P. L. Phospholipid scramblase: an update. FEBS Lett. 584, 2724–2730 (2010).
pubmed: 20302864 doi: 10.1016/j.febslet.2010.03.020
Suzuki, J., Umeda, M., Sims, P. J. & Nagata, S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468, 834–838 (2010). This article reports that TMEM16F works as a Ca
pubmed: 21107324 doi: 10.1038/nature09583
Suzuki, J., Denning, D. P., Imanishi, E., Horvitz, H. R. & Nagata, S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341, 403–406 (2013). This article reports that XKR8 at plasma membranes is cleaved at the C terminus to work as a scramblase, and the apoptotic cells require XKR8 to expose PtdSer to the cell surface.
pubmed: 23845944 doi: 10.1126/science.1236758
Schreiber, R. et al. Expression and function of epithelial anoctamins. J. Biol. Chem. 285, 7838–7845 (2010).
pubmed: 20056604 doi: 10.1074/jbc.M109.065367 pmcid: 2844227
Yang, H. et al. TMEM16F forms a Ca
pubmed: 23021219 doi: 10.1016/j.cell.2012.07.036 pmcid: 3582364
Almaça, J. et al. TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A. J. Biol. Chem. 284, 28571–28578 (2009).
pubmed: 19654323 doi: 10.1074/jbc.M109.010074 pmcid: 2781400
Martins, J. R. et al. Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proc. Natl Acad. Sci. USA 108, 18168–18172 (2011).
pubmed: 22006324 doi: 10.1073/pnas.1108094108 pmcid: 3207678
Suzuki, J. et al. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J. Biol. Chem. 288, 13305–13316 (2013).
pubmed: 23532839 doi: 10.1074/jbc.M113.457937 pmcid: 3650369
Duran, C., Qu, Z., Osunkoya, A. O., Cui, Y. & Hartzell, H. C. ANOs 3–7 in the anoctamin/Tmem16 Cl
pubmed: 22075693 doi: 10.1152/ajpcell.00140.2011
Yu, K. et al. Identification of a lipid scrambling domain in ANO6/TMEM16F. eLife 4, e06901 (2015).
pubmed: 26057829 doi: 10.7554/eLife.06901 pmcid: 4477620
Scudieri, P. et al. Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms. J. Physiol. 593, 3829–3848 (2015).
pubmed: 26108457 doi: 10.1113/JP270691 pmcid: 4575572
Gyobu, S., Ishihara, K., Suzuki, J., Segawa, K. & Nagata, S. Characterization of the scrambling domain of the TMEM16 family. Proc. Natl Acad. Sci. USA 114, 6274–6279 (2017). This article reports that among ten members of the mouse TMEM16 family, seven members, including TMEM16E and TMEM16K, present at the ER have the potential to scramble phospholipids.
pubmed: 28559311 doi: 10.1073/pnas.1703391114 pmcid: 5474828
Alvadia, C. et al. Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F. eLife 8, e44365 (2019). This article reports the tertiary structure of mouse TMEM16F with or without Ca
pubmed: 30785399 doi: 10.7554/eLife.44365 pmcid: 6414204
Feng, S. et al. Cryo-EM studies of TMEM16F calcium-activated ion channel suggest features important for lipid scrambling. Cell Rep. 28, 567–579 (2019).
pubmed: 31291589 doi: 10.1016/j.celrep.2019.06.023 pmcid: 6684876
Bushell, S. R. et al. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nat. Commun. 10, 3956 (2019).
pubmed: 31477691 doi: 10.1038/s41467-019-11753-1 pmcid: 6718402
Watanabe, R., Sakuragi, T., Noji, H. & Nagata, S. Single-molecule analysis of phospholipid scrambling by TMEM16F. Proc. Natl Acad. Sci. USA 115, 3066–3071 (2018). In this work, a single molecule of TMEM16 dimer is integrated into the lipid bilayers in which phospholipids are asymmetrically distributed between the layers. The molecule scrambles phospholipids in response to Ca
pubmed: 29507235 doi: 10.1073/pnas.1717956115 pmcid: 5866571
Veshaguri, S. et al. Direct observation of proton pumping by a eukaryotic P-type ATPase. Science 351, 1469–1473 (2016).
pubmed: 27013734 doi: 10.1126/science.aad6429 pmcid: 5023152
Gyobu, S. et al. A role of TMEM16E carrying a scrambling domain in sperm motility. Mol. Cell Biol. 36, 645–659 (2016).
pubmed: 26667038 doi: 10.1128/MCB.00919-15 pmcid: 4751691
Marsault, R., Murgia, M., Pozzan, T. & Rizzuto, R. Domains of high Ca
pubmed: 9130702 doi: 10.1093/emboj/16.7.1575 pmcid: 1169761
Zayzafoon, M. Calcium/calmodulin signaling controls osteoblast growth and differentiation. J. Cell. Biochem. 97, 56–70 (2006).
pubmed: 16229015 doi: 10.1002/jcb.20675
Ehlen, H. W. et al. Inactivation of Anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. J. Bone Miner. Res. 28, 246–259 (2013).
pubmed: 22936354 doi: 10.1002/jbmr.1751
Fujii, T., Sakata, A., Nishimura, S., Eto, K. & Nagata, S. TMEM16F is required for phosphatidylserine exposure and microvesicle release in activated mouse platelets. Proc. Natl Acad. Sci. USA 112, 12800–12805 (2015).
pubmed: 26417084 doi: 10.1073/pnas.1516594112 pmcid: 4611630
Headland, S. E. et al. Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Sci. Transl. Med. 7, 315ra190 (2015).
pubmed: 26606969 doi: 10.1126/scitranslmed.aac5608 pmcid: 6034622
Yang, X. et al. Bacterial endotoxin activates the coagulation cascade through Gasdermin D-dependent phosphatidylserine exposure. Immunity 51, 983–996 (2019).
pubmed: 31836429 doi: 10.1016/j.immuni.2019.11.005
Wu, N. et al. Critical role of lipid scramblase TMEM16F in phosphatidylserine exposure and repair of plasma membrane after pore formation. Cell Rep. 30, 1129–1140.e5 (2020).
pubmed: 31995754 doi: 10.1016/j.celrep.2019.12.066 pmcid: 7104872
Deisl, C., Hilgemann, D. W., Syeda, R. & Fine, M. TMEM16F and dynamins control expansive plasma membrane reservoirs. Nat. Commun. 12, 4990 (2021).
pubmed: 34404808 doi: 10.1038/s41467-021-25286-z pmcid: 8371123
Gerke, V., Creutz, C. E. & Moss, S. E. Annexins: linking Ca
pubmed: 15928709 doi: 10.1038/nrm1661
Foltz, S. J., Cui, Y. Y., Choo, H. J. & Hartzell, H. C. ANO5 ensures trafficking of annexins in wounded myofibers. J. Cell Biol. 220, e202007059 (2021).
pubmed: 33496727 doi: 10.1083/jcb.202007059 pmcid: 7844426
Chandra, G. et al. Dysregulated calcium homeostasis prevents plasma membrane repair in Anoctamin 5/TMEM16E-deficient patient muscle cells. Cell Death Discov. 5, 118 (2019).
pubmed: 31341644 doi: 10.1038/s41420-019-0197-z pmcid: 6639303
Griffin, D. A. et al. Defective membrane fusion and repair in Anoctamin5-deficient muscular dystrophy. Hum. Mol. Genet. 25, 1900–1911 (2016).
pubmed: 26911675 doi: 10.1093/hmg/ddw063 pmcid: 5062581
Petkovic, M., Oses-Prieto, J., Burlingame, A., Jan, L. Y. & Jan, Y. N. TMEM16K is an interorganelle regulator of endosomal sorting. Nat. Commun. 11, 3298 (2020).
pubmed: 32620747 doi: 10.1038/s41467-020-17016-8 pmcid: 7335067
Suzuki, J., Imanishi, E. & Nagata, S. Exposure of phosphatidylserine by Xk-related protein family members during apoptosis. J. Biol. Chem. 289, 30257–30267 (2014).
pubmed: 25231987 doi: 10.1074/jbc.M114.583419 pmcid: 4215210
Williamson, P. et al. Phospholipid scramblase activation pathways in lymphocytes. Biochemistry 40, 8065–8072 (2001).
pubmed: 11434775 doi: 10.1021/bi001929z
Schoenwaelder, S. M. et al. Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function. Blood 114, 663–666 (2009).
pubmed: 19387006 doi: 10.1182/blood-2009-01-200345
Pervaiz, N. et al. Evolutionary history of the human multigene families reveals widespread gene duplications throughout the history of animals. BMC Evol. Biol. 19, 128 (2019).
pubmed: 31221090 doi: 10.1186/s12862-019-1441-0 pmcid: 6585022
Kawano, M. & Nagata, S. Lupus-like autoimmune disease caused by a lack of Xkr8, a caspase-dependent phospholipid scramblase. Proc. Natl Acad. Sci. USA 280, 2132–2137 (2018).
doi: 10.1073/pnas.1720732115
Suzuki, J., Imanishi, E. & Nagata, S. Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure. Proc. Natl Acad. Sci. USA 113, 9509–9514 (2016).
pubmed: 27503893 doi: 10.1073/pnas.1610403113 pmcid: 5003272
Sakuragi, T., Kosako, H. & Nagata, S. Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure. Proc. Natl Acad. Sci. USA 33, 2907–2912 (2019).
doi: 10.1073/pnas.1820499116
Gadella, B. M. & Harrison, R. A. The capacitating agent bicarbonate induces protein kinase A-dependent changes in phospholipid transbilayer behavior in the sperm plasma membrane. Development 127, 2407–2420 (2000).
pubmed: 10804182 doi: 10.1242/dev.127.11.2407
Di Virgilio, F., Sarti, A. C., Falzoni, S., Marchi, E. D. & Adinolfi, E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer 18, 601–618 (2018).
pubmed: 30006588 doi: 10.1038/s41568-018-0037-0
Kamata-Sakurai, M. et al. Antibody to CD137 activated by extracellular adenosine triphosphate is tumor selective and broadly effective in vivo without systemic immune activation. Cancer Discov. 11, 158–175 (2021).
pubmed: 32847940 doi: 10.1158/2159-8290.CD-20-0328
Ryoden, Y., Segawa, K. & Nagata, S. Requirement of Xk and Vps13a for the P2X7-mediated phospholipid scrambling and cell lysis in mouse T cells. Proc. Natl Acad. Sci. USA 119, e2119286119 (2022). This article reports that XK, a paralogue of XKR8, is complexed with VPS13A lipid transporter, and works as a scramblase in response to an unidentified signal from the ATP-engaged P2X7 receptor.
pubmed: 35140185 doi: 10.1073/pnas.2119286119 pmcid: 8851519
Kumar, N. et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217, 3625–3639 (2018).
pubmed: 30093493 doi: 10.1083/jcb.201807019 pmcid: 6168267
Puts, C. F. & Holthuis, J. C. Mechanism and significance of P4 ATPase-catalyzed lipid transport: lessons from a Na
pubmed: 19233312 doi: 10.1016/j.bbalip.2009.02.005
Pomorski, T. & Menon, A. K. Lipid flippases and their biological functions. Cell. Mol. Life Sci. 63, 2908–2921 (2006). This article proposes the credit card model for phospholipids to transport through the lipid bilayer, in which the hydrophilic head group of phospholipids passes the hydrophilic crevasse in the molecule.
pubmed: 17103115 doi: 10.1007/s00018-006-6167-7
Hiraizumi, M., Yamashita, K., Nishizawa, T. & Nureki, O. Cryo-EM structures capture the transport cycle of the P4-ATPase flippase. Science 365, 1149–1155 (2019). This article reports the tertiary structure of the human ATP8A1/CDC50A hetero complex in six intermediate conformations. The structure agrees with the credit card model proposed by Pomorski and Mennon (2006).
pubmed: 31416931 doi: 10.1126/science.aay3353
Kalienkova, V., Mosina, V. C. & Paulino, C. The groovy TMEM16 family: molecular mechanisms of lipid scrambling and ion conduction. J. Mol. Biol. 433, 166941 (2021).
pubmed: 33741412 doi: 10.1016/j.jmb.2021.166941
Falzone, M. E. et al. TMEM16 scramblases thin the membrane to enable lipid scrambling. Nat. Commun. 13, 2604 (2022).
pubmed: 35562175 doi: 10.1038/s41467-022-30300-z pmcid: 9095706
Timcenko, M. et al. Structure and autoregulation of a P4-ATPase lipid flippase. Nature 571, 366–370 (2019). This article reports the first tertiary structure of P4-ATPase with yeast P4-ATPase and proposes a pathway for lipid transport.
pubmed: 31243363 doi: 10.1038/s41586-019-1344-7
Nakanishi, H. et al. Crystal structure of a human plasma membrane phospholipid flippase. J. Biol. Chem. 295, 10180–10194 (2020).
pubmed: 32493773 doi: 10.1074/jbc.RA120.014144 pmcid: 7383378
Nakanishi, H. et al. Transport cycle of plasma membrane flippase ATP11C by cryo-EM. Cell Rep. 32, 108208 (2020).
pubmed: 32997992 doi: 10.1016/j.celrep.2020.108208
Bai, L. et al. Autoinhibition and activation mechanisms of the eukaryotic lipid flippase Drs2p–Cdc50p. Nat. Commun. 10, 4142 (2019).
pubmed: 31515475 doi: 10.1038/s41467-019-12191-9 pmcid: 6742660
Timcenko, M. et al. Structural basis of substrate-independent phosphorylation in a P4-ATPase lipid flippase. J. Mol. Biol. 433, 167062 (2021).
pubmed: 34023399 doi: 10.1016/j.jmb.2021.167062
He, Y., Xu, J., Wu, X. & Li, L. Structures of a P4-ATPase lipid flippase in lipid bilayers. Protein Cell 11, 458–463 (2020).
pubmed: 32303992 doi: 10.1007/s13238-020-00712-y pmcid: 7251018
Bai, L. et al. Transport mechanism of P4 ATPase phosphatidylcholine flippases. eLife 9, e62163 (2020).
pubmed: 33320091 doi: 10.7554/eLife.62163 pmcid: 7773333
Post, R. L., Hegyvary, C. & Kume, S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 247, 6530–6540 (1972).
pubmed: 4263199 doi: 10.1016/S0021-9258(19)44725-X
Albers, R. W. Biochemical aspects of active transport. Annu. Rev. Biochem. 36, 727–756 (1967).
pubmed: 18257736 doi: 10.1146/annurev.bi.36.070167.003455
Vestergaard, A. L. et al. Critical roles of isoleucine-364 and adjacent residues in a hydrophobic gate control of phospholipid transport by the mammalian P4-ATPase ATP8A2. Proc. Natl Acad. Sci. USA 111, E1334–E1343 (2014).
pubmed: 24706822 doi: 10.1073/pnas.1321165111 pmcid: 3986137
Bai, L. et al. Structural basis of the P4B ATPase lipid flippase activity. Nat. Commun. 12, 5963 (2021).
pubmed: 34645814 doi: 10.1038/s41467-021-26273-0 pmcid: 8514546
Segawa, K. et al. A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes. J. Clin. Invest. 131, e148005 (2021). This article reports that a patient suffering neurological disorder carries a de novo dominant point mutation in ATP11A which causes flipping PtdCho in addition to PtdSer.
pubmed: 34403372 doi: 10.1172/JCI148005 pmcid: 8439608
Baldridge, R. D. & Graham, T. R. Two-gate mechanism for phospholipid selection and transport by type IV P-type ATPases. Proc. Natl Acad. Sci. USA 110, E358–E367 (2013).
pubmed: 23302692 doi: 10.1073/pnas.1216948110 pmcid: 3562821
Brunner, J. D., Lim, N. K., Schenck, S., Duerst, A. & Dutzler, R. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516, 207–212 (2014). This article reports the first tertiary structure of TMEM16 homodimer with fungus TMEM16. The structure has a rhomboidal architecture with a trans-bilayer hydrophilic groove at the periphery.
pubmed: 25383531 doi: 10.1038/nature13984
Kalienkova, V. et al. Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM. eLife 8, e44364 (2019).
pubmed: 30785398 doi: 10.7554/eLife.44364 pmcid: 6414200
Falzone, M. E. et al. Structural basis of Ca
pubmed: 30648972 doi: 10.7554/eLife.43229 pmcid: 6355197
Le, T. et al. An inner activation gate controls TMEM16F phospholipid scrambling. Nat. Commun. 10, 1846 (2019).
pubmed: 31015464 doi: 10.1038/s41467-019-09778-7 pmcid: 6478717
Lee, B.-C. et al. Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase. Nat. Commun. 9, 3251 (2018).
pubmed: 30108217 doi: 10.1038/s41467-018-05724-1 pmcid: 6092359
Khelashvili, G. et al. Membrane lipids are both the substrates and a mechanistically responsive environment of TMEM16 scramblase proteins. J. Comput. Chem. 41, 538–551 (2020).
pubmed: 31750558 doi: 10.1002/jcc.26105
Ishihara, K., Suzuki, J. & Nagata, S. Role of Ca
pubmed: 27227820 doi: 10.1021/acs.biochem.6b00176
Bethel, N. P. & Grabe, M. Atomistic insight into lipid translocation by a TMEM16 scramblase. Proc. Natl Acad. Sci. USA 113, 14049–14054 (2016). This article reports the molecular dynamics simulation analysis of TMEM16, and proposes that phospholipids move through the groove of the protein using hydrophilic residues as ‘stepping stones’.
pubmed: 27872308 doi: 10.1073/pnas.1607574113 pmcid: 5150362
Jiang, T., Yu, K., Hartzell, H. C. & Tajkhorshid, E. Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase. eLife 6, e28671 (2017).
pubmed: 28917060 doi: 10.7554/eLife.28671 pmcid: 5628016
Malvezzi, M. et al. Out-of-the-groove transport of lipids by TMEM16 and GPCR scramblases. Proc. Natl Acad. Sci. USA 115, E7033–E7042 (2018).
pubmed: 29925604 doi: 10.1073/pnas.1806721115 pmcid: 6065010
Khelashvili, G., Kots, E., Cheng, X., Levine, M. V. & Weinstein, H. The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase. Commun. Biol. 5, 990 (2022).
pubmed: 36123525 doi: 10.1038/s42003-022-03930-8 pmcid: 9484709
Jojoa-Cruz, S. et al. Cryo-EM structure of the mechanically activated ion channel OSCA1.2. eLife 7, e41845 (2018).
pubmed: 30382939 doi: 10.7554/eLife.41845 pmcid: 6235563
Liu, X., Wang, J. & Sun, L. Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2. Nat. Commun. 9, 5060 (2018).
pubmed: 30498218 doi: 10.1038/s41467-018-07564-5 pmcid: 6265326
Maity, K. et al. Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proc. Natl Acad. Sci. USA 116, 14309–14318 (2019).
pubmed: 31227607 doi: 10.1073/pnas.1900774116 pmcid: 6628804
Ballesteros, A., Fenollar-Ferrer, C. & Swartz, K. J. Structural relationship between the putative hair cell mechanotransduction channel TMC1 and TMEM16 proteins. eLife 7, e38433 (2018).
pubmed: 30063209 doi: 10.7554/eLife.38433 pmcid: 6067890
Pan, B. et al. TMC1 forms the pore of mechanosensory transduction channels in vertebrate inner ear hair cells. Neuron 99, 736–753 (2018).
pubmed: 30138589 doi: 10.1016/j.neuron.2018.07.033 pmcid: 6360533
Jeong, H. et al. Structures of the TMC-1 complex illuminate mechanosensory transduction. Nature 610, 796–803 (2022).
pubmed: 36224384 doi: 10.1038/s41586-022-05314-8 pmcid: 9605866
Ballesteros, A. & Swartz, K. J. Regulation of membrane homeostasis by TMC1 mechanoelectrical transduction channels is essential for hearing. Sci. Adv. 8, eabm5550 (2022).
pubmed: 35921424 doi: 10.1126/sciadv.abm5550 pmcid: 9348795
Sakuragi, T. et al. The tertiary structure of the human Xkr8–Basigin complex that scrambles phospholipids at plasma membranes. Nat. Struct. Mol. Biol. 28, 825–834 (2021). This article reports the tertiary structure of the human XKR8–Basigin complex and proposes a phospholipid entry site and hydrophilic path for scrambling phospholipids.
pubmed: 34625749 doi: 10.1038/s41594-021-00665-8 pmcid: 8500837
Straub, M. S., Alvadia, C., Sawicka, M. & Dutzler, R. Cryo-EM structures of the caspase activated protein XKR9 involved in apoptotic lipid scrambling. eLife 10, e69800 (2021).
pubmed: 34263724 doi: 10.7554/eLife.69800 pmcid: 8298096
Jung, H. H., et al. McLeod neuroacanthocytosis syndrome. National Library of Medicine https://www.ncbi.nlm.nih.gov/books/NBK1354/ (2021).
Park, J.-S., Hu, Y., Hollingsworth, N. M., Miltenberger-Miltenyi, G. & Neiman, A. M. Interaction between VPS13A and the XK scramblase is important for VPS13A function in humans. J. Cell Sci. 135, jcs260227 (2022).
pubmed: 35950506 doi: 10.1242/jcs.260227
Guillén-Samander, A. et al. A partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane. Proc. Natl Acad. Sci. USA 119, e2205425119 (2022).
pubmed: 35994651 doi: 10.1073/pnas.2205425119 pmcid: 9436381
Segawa, K. & Nagata, S. An apoptotic ‘eat me’ signal: phosphatidylserine exposure. Trends Cell Biol. 25, 649–650 (2015).
doi: 10.1016/j.tcb.2015.08.003
Whitlock, J. M. & Chernomordik, L. V. Flagging fusion: phosphatidylserine signaling in cell–cell fusion. J. Biol. Chem. 296, 100411 (2021).
pubmed: 33581114 doi: 10.1016/j.jbc.2021.100411 pmcid: 8005811
Wood, W. et al. Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development 127, 5245–5252 (2000).
pubmed: 11076747 doi: 10.1242/dev.127.24.5245
Nagasaka, A., Kawane, K., Yoshida, H. & Nagata, S. Apaf-1-independent programmed cell death in mouse development. Cell Death Differ. 17, 931–941 (2010).
pubmed: 19960021 doi: 10.1038/cdd.2009.186
Nagata, S., Hanayama, R. & Kawane, K. Autoimmunity and the clearance of dead cells. Cell 140, 619–630 (2010).
pubmed: 20211132 doi: 10.1016/j.cell.2010.02.014
deCathelineau, A. M. & Henson, P. M. The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem. 39, 105–117 (2003).
pubmed: 14585077 doi: 10.1042/bse0390105
Muñoz, L. E., Lauber, K., Schiller, M., Manfredi, A. A. & Herrmann, M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat. Rev. Rheumatol. 6, 280–289 (2010).
pubmed: 20431553 doi: 10.1038/nrrheum.2010.46
Surh, C. D. & Sprent, J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372, 100–103 (1994).
pubmed: 7969401 doi: 10.1038/372100a0
Ren, Y. & Savill, J. Apoptosis: the importance of being eaten. Cell Death Differ. 5, 563–568 (1998).
pubmed: 10200510 doi: 10.1038/sj.cdd.4400407
Segawa, K., Suzuki, J. & Nagata, S. Constitutive exposure of phosphatidylserine on viable cells. Proc. Natl Acad. Sci. USA 108, 19246–19251 (2011).
pubmed: 22084121 doi: 10.1073/pnas.1114799108 pmcid: 3228483
Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nat. Immunol. 14, 986–995 (2013).
pubmed: 24048120 doi: 10.1038/ni.2705 pmcid: 4045180
Yanagihashi, Y., Segawa, K., Maeda, R., Nabeshima, Y.-I. & Nagata, S. Mouse macrophages show different requirements for phosphatidylserine receptor Tim4 in efferocytosis. Proc. Natl Acad. Sci. USA 114, 8800–8805 (2017).
pubmed: 28768810 doi: 10.1073/pnas.1705365114 pmcid: 5565444
Lemke, G. How macrophages deal with death. Nat. Rev. Immunol. 36, 1–11 (2019).
Nishi, C., Toda, S., Segawa, K. & Nagata, S. Tim4- and MerTK-mediated engulfment of apoptotic cells by mouse resident peritoneal macrophages. Mol. Cell. Biol. 34, 1512–1520 (2014).
pubmed: 24515440 doi: 10.1128/MCB.01394-13 pmcid: 3993587
Hanayama, R. et al. Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187 (2002).
pubmed: 12000961 doi: 10.1038/417182a
Hanayama, R., Tanaka, M., Miwa, K. & Nagata, S. Expression of developmental endothelial locus-1 in a subset of macrophages for engulfment of apoptotic cells. J. Immunol. 172, 3876–3882 (2004).
pubmed: 15004195 doi: 10.4049/jimmunol.172.6.3876
Kourtzelis, I. et al. DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat. Immunol. 20, 40–49 (2019).
pubmed: 30455459 doi: 10.1038/s41590-018-0249-1
Proto, J. D. et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 49, 666–677 (2018).
pubmed: 30291029 doi: 10.1016/j.immuni.2018.07.015
Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430–434 (2007).
pubmed: 17960134 doi: 10.1038/nature06329
Park, S. Y. et al. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ. 15, 192–201 (2008).
pubmed: 17962816 doi: 10.1038/sj.cdd.4402242
Das, S. et al. Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proc. Natl Acad. Sci. USA 108, 2136–2141 (2011).
pubmed: 21245295 doi: 10.1073/pnas.1014775108 pmcid: 3033312
Harris, E. N. & Cabral, F. Ligand binding and signaling of HARE/Stabilin-2. Biomolecules 9, 273 (2019).
pubmed: 31336723 doi: 10.3390/biom9070273 pmcid: 6681266
Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).
pubmed: 29362479 doi: 10.1038/s41418-017-0012-4 pmcid: 5864239
Shan, B., Pan, H., Najafov, A. & Yuan, J. Necroptosis in development and diseases. Genes Dev. 32, 327–340 (2018).
pubmed: 29593066 doi: 10.1101/gad.312561.118 pmcid: 5900707
Gong, Y.-N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300 (2017).
pubmed: 28388412 doi: 10.1016/j.cell.2017.03.020 pmcid: 5443414
Rühl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).
pubmed: 30467171 doi: 10.1126/science.aar7607
Di Virgilio, F., Ben, D. D., Sarti, A. C., Giuliani, A. L. & Falzoni, S. The P2X7 receptor in infection and inflammation. Immunity 47, 15–31 (2017).
pubmed: 28723547 doi: 10.1016/j.immuni.2017.06.020
Aswad, F., Kawamura, H. & Dennert, G. High sensitivity of CD4
pubmed: 16116196 doi: 10.4049/jimmunol.175.5.3075
Ryoden, Y. & Nagata, S. The XK plasma membrane scramblase and the VPS13A cytosolic lipid transporter for ATP-induced cell death. BioEssays 44, e2200106 (2022).
pubmed: 35996795 doi: 10.1002/bies.202200106
Thiagarajan, P., Parker, C. J. & Prchal, J. T. How do red blood cells die? Front. Physiol. 12, 655393 (2021).
pubmed: 33790808 doi: 10.3389/fphys.2021.655393 pmcid: 8006275
Yoshida, H. et al. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature 437, 754–758 (2005). At the final stage of definitive erythropoiesis, pyrenocytes (nuclei surrounded by plasma membranes) are separated from reticulocytes. This article reports that the pyrenocytes expose PtdSer for engulfment by macrophages soon after the division from reticulocytes.
pubmed: 16193055 doi: 10.1038/nature03964
Toda, S., Segawa, K. & Nagata, S. MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood 123, 3963–3971 (2014).
pubmed: 24659633 doi: 10.1182/blood-2014-01-547976
Ball, J. B., Green-Fulgham, S. M. & Watkins, L. R. Mechanisms of microglia-mediated synapse turnover and synaptogenesis. Prog. Neurobiol. 218, 102336 (2022).
pubmed: 35940391 doi: 10.1016/j.pneurobio.2022.102336
Frost, J. L. & Schafer, D. P. Microglia: architects of the developing nervous system. Trends Cell Biol. 26, 587–597 (2016).
pubmed: 27004698 doi: 10.1016/j.tcb.2016.02.006 pmcid: 4961529
Li, T. et al. A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO J. 39, e104136 (2020).
pubmed: 32452062 doi: 10.15252/embj.2019104136 pmcid: 7429740
Scott-Hewitt, N. et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 39, e105380 (2020). Microglia eliminate supernumerary synapses generated during the development of the nervous network, which is called pruning. This article reports that the synapses to be eliminated expose PtdSer as a neuronal ‘eat me’ signal.
pubmed: 32657463 doi: 10.15252/embj.2020105380 pmcid: 7429741
Kurematsu, C. et al. Synaptic pruning of murine adult-born neurons by microglia depends on phosphatidylserine. J. Exp. Med. 219, e20202304 (2022).
pubmed: 35297954 doi: 10.1084/jem.20202304 pmcid: 9195048
Sapar, M. L. et al. Phosphatidylserine externalization results from and causes neurite degeneration in Drosophila. Cell Rep. 24, 2273–2286 (2018).
pubmed: 30157423 doi: 10.1016/j.celrep.2018.07.095 pmcid: 6174084
Pereira, M. et al. Common signalling pathways in macrophage and osteoclast multinucleation. J. Cell. Sci. 131, jcs216267 (2018).
pubmed: 29871956 doi: 10.1242/jcs.216267
Petrany, M. J. & Millay, D. P. Cell fusion: merging membranes and making muscle. Trends Cell Biol. 29, 964–973 (2019).
pubmed: 31648852 doi: 10.1016/j.tcb.2019.09.002 pmcid: 7849503
Gerbaud, P. & Pidoux, G. An overview of molecular events occurring in human trophoblast fusion. Placenta 36, S35–S42 (2015).
pubmed: 25564303 doi: 10.1016/j.placenta.2014.12.015
Das, M. et al. Phosphatidylserine efflux and intercellular fusion in a BeWo model of human villous cytotrophoblast. Placenta 25, 396–407 (2004).
pubmed: 15081634 doi: 10.1016/j.placenta.2003.11.004
Satouh, Y. & Ikawa, M. New insights into the molecular events of mammalian fertilization. Trends Biochem. Sci. 43, 818–828 (2018).
pubmed: 30170889 doi: 10.1016/j.tibs.2018.08.006 pmcid: 6162164
Helming, L., Winter, J. & Gordon, S. The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. J. Cell Sci. 122, 453–459 (2009).
pubmed: 19155290 doi: 10.1242/jcs.037200 pmcid: 2714432
Verma, S. K. et al. Cell-surface phosphatidylserine regulates osteoclast precursor fusion. J. Biol. Chem. 293, 254–270 (2018).
pubmed: 29101233 doi: 10.1074/jbc.M117.809681
Jeong, J. & Conboy, I. M. Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes. Biochem. Biophys. Res. Commun. 414, 9–13 (2011).
pubmed: 21910971 doi: 10.1016/j.bbrc.2011.08.128 pmcid: 3195849
Rival, C. M. et al. Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization. Nat. Commun. 10, 4456 (2019).
pubmed: 31575859 doi: 10.1038/s41467-019-12406-z pmcid: 6773685
Martens, S. & McMahon, H. T. Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol. 9, 543–556 (2008).
pubmed: 18496517 doi: 10.1038/nrm2417
Deneke, V. E. & Pauli, A. The fertilization enigma: how sperm and egg fuse. Annu. Rev. Cell Dev. Biol. 37, 391–414 (2021).
pubmed: 34288709 doi: 10.1146/annurev-cellbio-120219-021751
Szondy, Z. et al. Involvement of phosphatidylserine receptors in the skeletal muscle regeneration: therapeutic implications. J. Cachexia Sarcopenia Muscle 13, 1961–1973 (2022).
pubmed: 35666022 doi: 10.1002/jcsm.13024 pmcid: 9397555
van den Eijnde, S. M. et al. Transient expression of phosphatidylserine at cell–cell contact areas is required for myotube formation. J. Cell Sci. 114, 3631–3642 (2001).
pubmed: 11707515 doi: 10.1242/jcs.114.20.3631
Tsuchiya, M. et al. Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nat. Commun. 9, 2049 (2018).
pubmed: 29799007 doi: 10.1038/s41467-018-04436-w pmcid: 5967302
Grifell-Junyent, M. et al. CDC50A is required for aminophospholipid transport and cell fusion in mouse C2C12 myoblasts. J. Cell Sci. 135, jcs258649 (2022).
pubmed: 34664668 doi: 10.1242/jcs.258649
Ochiai, Y., Suzuki, C., Segawa, K., Uchiyama, Y. & Nagata, S. Inefficient development of syncytiotrophoblasts in the Atp11a-deficient mouse placenta. Proc. Natl Acad. Sci. USA 119, e2200582119 (2022). Trophoblasts in the placenta fuse to form syncytiotrophoblasts at the maternal–fetal interface. This article reports that the flippase-deficient trophoblasts fail to fuse, probably because of the constitutive exposure of PtdSer.
pubmed: 35476530 doi: 10.1073/pnas.2200582119 pmcid: 9170144
Middel, V. et al. Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair. Nat. Commun. 7, 12875 (2016).
pubmed: 27641898 doi: 10.1038/ncomms12875 pmcid: 5031802
Croissant, C., Carmeille, R., Brévart, C. & Bouter, A. Annexins and membrane repair dysfunctions in muscular dystrophies. Int. J. Mol. Sci. 22, 5276 (2021).
pubmed: 34067866 doi: 10.3390/ijms22105276 pmcid: 8155887
Neumann, B. et al. EFF-1-mediated regenerative axonal fusion requires components of the apoptotic pathway. Nature 517, 219–222 (2015).
pubmed: 25567286 doi: 10.1038/nature14102
Hisamoto, N. et al. Phosphatidylserine exposure mediated by ABC transporter activates the integrin signaling pathway promoting axon regeneration. Nat. Commun. 9, 3099 (2018).
pubmed: 30082731 doi: 10.1038/s41467-018-05478-w pmcid: 6079064
Bevers, E. M., Comfurius, P., van Rijn, J. L., Hemker, H. C. & Zwaal, R. F. Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur. J. Biochem. 122, 429–436 (1982). This article reports that the activated platelets expose PtdSer, to which blood clotting factors bind and are activated to generate thrombin for blood clotting.
pubmed: 7060583 doi: 10.1111/j.1432-1033.1982.tb05898.x
Zwaal, R. F., Comfurius, P. & Bevers, E. M. Lipid–protein interactions in blood coagulation. Biochim. Biophys. Acta 1376, 433–453 (1998).
pubmed: 9805008 doi: 10.1016/S0304-4157(98)00018-5
Peschon, J. J. et al. An essential role for ectodomain shedding in mammalian development. Science 282, 1281–1284 (1998).
pubmed: 9812885 doi: 10.1126/science.282.5392.1281
Sommer, A. et al. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat. Commun. 7, 11523 (2016).
pubmed: 27161080 doi: 10.1038/ncomms11523 pmcid: 4866515
Elliott, J. I. et al. Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nat. Cell Biol. 7, 808–816 (2005).
pubmed: 16025105 doi: 10.1038/ncb1279
Kirkin, V. et al. The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells. Cell Death Differ. 14, 1678–1687 (2007).
pubmed: 17557115 doi: 10.1038/sj.cdd.4402175
Schulte, M. et al. ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death Differ. 14, 1040–1049 (2007).
pubmed: 17290285 doi: 10.1038/sj.cdd.4402101
Bleibaum, F. et al. ADAM10 sheddase activation is controlled by cell membrane asymmetry. J. Mol. Cell Biol. 11, 979–993 (2019).
pubmed: 30753537 doi: 10.1093/jmcb/mjz008 pmcid: 6927242
Patton, S. & Keenan, T. W. The milk fat globule membrane. Biochim. Biophys. Acta 415, 273–309 (1975).
pubmed: 1101969 doi: 10.1016/0304-4157(75)90011-8
Hanayama, R. & Nagata, S. Impaired involution of mammary glands in the absence of milk fat globule EGF factor 8. Proc. Natl Acad. Sci. USA 102, 16886–16891 (2005).
pubmed: 16275924 doi: 10.1073/pnas.0508599102 pmcid: 1277971
Théry, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009).
pubmed: 19498381 doi: 10.1038/nri2567
Nakai, W. et al. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci. Rep. 6, 33935 (2016).
pubmed: 27659060 doi: 10.1038/srep33935 pmcid: 5034288
Wei, X. et al. Surface phosphatidylserine is responsible for the internalization on microvesicles derived from hypoxia-induced human bone marrow mesenchymal stem cells into human endothelial cells. PLoS ONE 11, e0147360 (2016).
pubmed: 26808539 doi: 10.1371/journal.pone.0147360 pmcid: 4726621
Puhm, F., Boilard, E. & Machlus, K. R. Platelet extracellular vesicles. Arterioscler. Thromb. Vasc. Biol. 41, 87–96 (2020).
pubmed: 33028092 pmcid: 7769913
Sims, P., Wiedmer, T., Esmon, C., Weiss, H. & Shattil, S. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J. Biol. Chem. 264, 17049–17057 (1989).
pubmed: 2793843 doi: 10.1016/S0021-9258(18)71457-9
Mercer, J. & Helenius, A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535 (2008). This article reports that the infection of the vaccinia virus, an enveloped virus, is promoted by PtdSer exposed on the surface of the virus particles.
pubmed: 18436786 doi: 10.1126/science.1155164
Morizono, K. & Chen, I. S. Y. Role of phosphatidylserine receptors in enveloped virus infection. J. Virol. 88, 4275–4290 (2014).
pubmed: 24478428 doi: 10.1128/JVI.03287-13 pmcid: 3993771
Li, M. et al. TIM-family proteins inhibit HIV-1 release. Proc. Natl Acad. Sci. USA 111, E3699–E3707 (2014).
pubmed: 25136083 doi: 10.1073/pnas.1404851111 pmcid: 4156686
Rood, J. E., Maartens, A., Hupalowska, A., Teichmann, S. A. & Regev, A. Impact of the Human Cell Atlas on medicine. Nat. Med. 28, 2486–2496 (2022).
pubmed: 36482102 doi: 10.1038/s41591-022-02104-7
Liou, A. Y., Molday, L. L., Wang, J., Andersen, J. P. & Molday, R. S. Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells. J. Biol. Chem. 294, 6809–6821 (2019).
pubmed: 30850395 doi: 10.1074/jbc.RA118.007270 pmcid: 6497962
Siggs, O. M. et al. The P4-type ATPase ATP11C is essential for B lymphopoiesis in adult bone marrow. Nat. Immunol. 12, 434–440 (2011).
pubmed: 21423172 doi: 10.1038/ni.2012 pmcid: 3079768
Siggs, O. M., Schnabl, B., Webb, B. & Beutler, B. X-linked cholestasis in mouse due to mutations of the P4-ATPase ATP11C. Proc. Natl Acad. Sci. USA 108, 7890–7895 (2011).
pubmed: 21518881 doi: 10.1073/pnas.1104631108 pmcid: 3093471
Yabas, M. et al. Mice deficient in the putative phospholipid flippase ATP11C exhibit altered erythrocyte shape, anemia, and reduced erythrocyte life span. J. Biol. Chem. 289, 19531–19537 (2014).
pubmed: 24898253 doi: 10.1074/jbc.C114.570267 pmcid: 4094063
Yabas, M. et al. ATP11C is critical for the internalization of phosphatidylserine and differentiation of B lymphocytes. Nat. Immunol. 12, 441–449 (2011).
pubmed: 21423173 doi: 10.1038/ni.2011 pmcid: 3272780
Arashiki, N. et al. ATP11C is a major flippase in human erythrocytes and its defect causes congenital hemolytic anemia. Haematologica 101, 559–565 (2016).
pubmed: 26944472 doi: 10.3324/haematol.2016.142273 pmcid: 5004368
Brain, M. C., Pihl, C., Robertson, L. & Brown, C. B. Evidence for a mechanosensitive calcium influx into red cells. Blood Cell. Mol. Dis. 32, 349–352 (2004).
doi: 10.1016/j.bcmd.2004.01.005
Boas, F. E., Forman, L. & Beutler, E. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc. Natl Acad. Sci. USA 95, 3077–3081 (1998).
pubmed: 9501218 doi: 10.1073/pnas.95.6.3077 pmcid: 19697
Li, T. et al. Phospholipid-flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure. EMBO J. 40, e107915 (2021).
pubmed: 34585770 doi: 10.15252/embj.2021107915 pmcid: 8561630
Mühle, C. et al. Characterization of acid sphingomyelinase activity in human cerebrospinal fluid. PLoS ONE 8, e62912 (2013).
pubmed: 23658784 doi: 10.1371/journal.pone.0062912 pmcid: 3642176
Kornhuber, J., Rhein, C., Müller, C. P. & Mühle, C. Secretory sphingomyelinase in health and disease. Biol. Chem. 396, 707–736 (2015).
pubmed: 25803076 doi: 10.1515/hsz-2015-0109
Pater, J. A. et al. Autosomal dominant non-syndromic hearing loss maps to DFNA33 (13q34) and co-segregates with splice and frameshift variants in ATP11A, a phospholipid flippase gene. Hum. Genet. 141, 431–444 (2022).
pubmed: 35278131 doi: 10.1007/s00439-022-02444-x pmcid: 9035003
Okamoto, S. et al. The N- or C-terminal cytoplasmic regions of P4-ATPases determine their cellular localization. Mol. Biol. Cell 31, 2115–2124 (2020).
pubmed: 32614659 doi: 10.1091/mbc.E20-04-0225 pmcid: 7530900
Feenstra, B. et al. Common variants associated with general and MMR vaccine-related febrile seizures. Nat. Genet. 46, 1274–1282 (2014).
pubmed: 25344690 doi: 10.1038/ng.3129 pmcid: 4244308
Wang, T. A. et al. TMEM16C is involved in thermoregulation and protects rodent pups from febrile seizures. Proc. Natl Acad. Sci. USA 118, e202334211 (2021).
Zanni, E. D., Gradogna, A., Picco, C., Scholz-Starke, J. & Boccaccio, A. TMEM16E/ANO5 mutations related to bone dysplasia or muscular dystrophy cause opposite effects on lipid scrambling. Hum. Mutat. 41, 1157–1170 (2020).
pubmed: 32112655 doi: 10.1002/humu.24006
Zwaal, R. F. & Schroit, A. J. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89, 1121–1132 (1997).
pubmed: 9028933 doi: 10.1182/blood.V89.4.1121
Marconi, C. et al. A novel missense mutation in ANO5/TMEM16E is causative for gnathodiaphyseal dyplasia in a large Italian pedigree. Eur. J. Hum. Genet. 21, 613–619 (2013).
pubmed: 23047743 doi: 10.1038/ejhg.2012.224
Savarese, M. et al. Next generation sequencing on patients with LGMD and nonspecific myopathies: findings associated with ANO5 mutations. Neuromuscul. Disord. 25, 533–541 (2015).
pubmed: 25891276 doi: 10.1016/j.nmd.2015.03.011 pmcid: 4502439
Tsutsumi, S. et al. The novel gene encoding a putative transmembrane protein is mutated in gnathodiaphyseal dysplasia (GDD). Am. J. Hum. Genet. 74, 1255–1261 (2004).
pubmed: 15124103 doi: 10.1086/421527 pmcid: 1182089
Xu, J. et al. Genetic disruption of Ano5 in mice does not recapitulate human ANO5-deficient muscular dystrophy. Skelet. Muscle 5, 43 (2015).
pubmed: 26693275 doi: 10.1186/s13395-015-0069-z pmcid: 4685631
Sui, T. et al. Development of muscular dystrophy in a CRISPR-engineered mutant rabbit model with frame-disrupting ANO5 mutations. Cell Death Dis. 9, 609 (2018).
pubmed: 29789544 doi: 10.1038/s41419-018-0674-y pmcid: 5964072
Millington-Burgess, S. L. & Harper, M. T. Gene of the issue: ANO6 and Scott syndrome. Platelets 31, 964–967 (2020).
pubmed: 31746257 doi: 10.1080/09537104.2019.1693039
Castoldi, E., Collins, P. W., Williamson, P. L. & Bevers, E. M. Compound heterozygosity for 2 novel TMEM16F mutations in a patient with Scott syndrome. Blood 117, 4399–4400 (2011).
pubmed: 21511967 doi: 10.1182/blood-2011-01-332502
Boisseau, P. et al. A new mutation of ANO6 in two familial cases of Scott syndrome. Br. J. Haematol. 180, 750–752 (2016).
pubmed: 27879994 doi: 10.1111/bjh.14439
Rosing, J. et al. Impaired factor X and prothrombin activation associated with decreased phospholipid exposure in platelets from a patient with a bleeding disorder. Blood 65, 1557–1561 (1985).
pubmed: 3995186 doi: 10.1182/blood.V65.6.1557.bloodjournal6561557
Brooks, M. B. et al. A TMEM16F point mutation causes an absence of canine platelet TMEM16F and ineffective activation and death-induced phospholipid scrambling. J. Thromb. Haemost. 13, 2240–2252 (2015).
pubmed: 26414452 doi: 10.1111/jth.13157
Das, S. et al. NGEP, a prostate-specific plasma membrane protein that promotes the association of LNCaP cells. Cancer Res. 67, 1594–1601 (2007).
pubmed: 17308099 doi: 10.1158/0008-5472.CAN-06-2673
Wahlström, G. et al. The variant rs77559646 associated with aggressive prostate cancer disrupts ANO7 mRNA splicing and protein expression. Hum. Mol. Genet. 31, 2063–2077 (2022).
pubmed: 35043958 doi: 10.1093/hmg/ddac012 pmcid: 9239746
Renaud, M. et al. Autosomal recessive cerebellar ataxia type 3 due to ANO10 mutations: delineation and genotype–phenotype correlation study. JAMA Neurol. 71, 1305–1310 (2014).
pubmed: 25089919 doi: 10.1001/jamaneurol.2014.193
Balreira, A. et al. ANO10 mutations cause ataxia and coenzyme Q
pubmed: 25182700 doi: 10.1007/s00415-014-7476-7 pmcid: 4221650
Vermeer, S. et al. Targeted next-generation sequencing of a 12.5 Mb homozygous region reveals ANO10 mutations in patients with autosomal-recessive cerebellar ataxia. Am. J. Hum. Genet. 87, 813–819 (2010).
pubmed: 21092923 doi: 10.1016/j.ajhg.2010.10.015 pmcid: 2997370
Kramer, J. & Hawley, R. S. The spindle-associated transmembrane protein Axs identifies a membranous structure ensheathing the meiotic spindle. Nat. Cell Biol. 5, 261–263 (2003).
pubmed: 12646877 doi: 10.1038/ncb944
Lee, S., Russo, D. & Redman, C. M. The Kell blood group system: Kell and XK membrane proteins. Semin. Hematol. 37, 113–121 (2000).
pubmed: 10791880 doi: 10.1016/S0037-1963(00)90036-2
Peikert, K., et al. VPS13A disease. National Library of Medicine. https://www.ncbi.nlm.nih.gov/books/NBK1387/ (2023).
Zhu, X. et al. Giant axon formation in mice lacking Kell, XK, or Kell and XK animal models of McLeod neuroacanthocytosis syndrome. Ame. J. Pathol. 184, 800–807 (2014).
doi: 10.1016/j.ajpath.2013.11.013
Yamashita, Y., Suzuki, C., Uchiyama, Y. & Nagata, S. Infertility caused by inefficient apoptotic germ cell clearance in Xkr8-deficient male mice. Mol. Cell. Biol. 40, e00402–e00419 (2020).
pubmed: 31712393 doi: 10.1128/MCB.00402-19 pmcid: 6965033
Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147–1150 (2004).
pubmed: 15155946 doi: 10.1126/science.1094359
Miyanishi, M., Segawa, K. & Nagata, S. Synergistic effect of Tim4 and MFG-E8 null mutations on the development of autoimmunity. Int. Immunol. 24, 551–559 (2012).
pubmed: 22723547 doi: 10.1093/intimm/dxs064
Kaneshiro, N. et al. Lipid flippase dysfunction as a therapeutic target for endosomal anomalies in Alzheimer’s disease. iScience 25, 103869 (2022).
pubmed: 35243232 doi: 10.1016/j.isci.2022.103869 pmcid: 8857600
Devaux, P. F. Is lipid translocation involved during endo- and exocytosis? Biochimie 82, 497–509 (2000).
pubmed: 10865135 doi: 10.1016/S0300-9084(00)00209-1
Hu, Y. et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J. Exp. Med. 213, 2759–2772 (2016).
pubmed: 27810927 doi: 10.1084/jem.20160612 pmcid: 5110022
Baker, R. W. & Hughson, F. M. Chaperoning SNARE assembly and disassembly. Nat. Rev. Mol. Cell. Biol. 17, 465–479 (2016).
pubmed: 27301672 doi: 10.1038/nrm.2016.65 pmcid: 5471617
Shin, H.-W. & Takatsu, H. Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine). FASEB J. 33, 3087–3096 (2019).
pubmed: 30509129 doi: 10.1096/fj.201801873R
Levano, K. et al. Atp8a1 deficiency is associated with phosphatidylserine externalization in hippocampus and delayed hippocampus-dependent learning. J. Neurochem. 120, 302–313 (2012).
pubmed: 22007859 doi: 10.1111/j.1471-4159.2011.07543.x
McMillan, H. J. et al. Recessive mutations in ATP8A2 cause severe hypotonia, cognitive impairment, hyperkinetic movement disorders and progressive optic atrophy. Orphanet J. Rare Dis. https://doi.org/10.1186/s13023-018-0825-3 (2018).
doi: 10.1186/s13023-018-0825-3 pubmed: 30012219 pmcid: 6048855
Guissart, C. et al. ATP8A2-related disorders as recessive cerebellar ataxia. J. Neurol. 267, 203–213 (2020).
pubmed: 31612321 doi: 10.1007/s00415-019-09579-4
Zhu, X. et al. Mutations in a P-type ATPase gene cause axonal degeneration. PLoS Genet. 8, e1002853 (2012).
pubmed: 22912588 doi: 10.1371/journal.pgen.1002853 pmcid: 3415440
Klomp, L. W. et al. Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology 40, 27–38 (2004).
pubmed: 15239083 doi: 10.1002/hep.20285
Stapelbroek, J. M. et al. ATP8B1 is essential for maintaining normal hearing. Proc. Natl Acad. Sci. USA 106, 9709–9714 (2009).
pubmed: 19478059 doi: 10.1073/pnas.0807919106 pmcid: 2700994
Vogt, G. et al. Biallelic truncating variants in ATP9A cause a novel neurodevelopmental disorder involving postnatal microcephaly and failure to thrive. J. Med. Genet. 59, 662–668 (2022).
pubmed: 34379057 doi: 10.1136/jmedgenet-2021-107843
Mattioli, F. et al. Biallelic truncation variants in ATP9A are associated with a novel autosomal recessive neurodevelopmental disorder. NPJ Genom. Med. 6, 94 (2021).
pubmed: 34764295 doi: 10.1038/s41525-021-00255-z pmcid: 8586153
Meguro, M. et al. A novel maternally expressed gene, ATP10C, encodes a putative aminophospholipid translocase associated with Angelman syndrome. Nat. Genet. 28, 19–20 (2001).
pubmed: 11326269 doi: 10.1038/ng0501-19
Dhar, M. S., Yuan, J. S., Elliott, S. B. & Sommardahl, C. A type IV P-type ATPase affects insulin-mediated glucose uptake in adipose tissue and skeletal muscle in mice. J. Nutr. Biochem. 17, 811–820 (2006).
pubmed: 16517145 doi: 10.1016/j.jnutbio.2006.01.002
Real, R. et al. ATP10B and the risk for Parkinson’s disease. Acta Neuropathol. 140, 401–402 (2020).
pubmed: 32556962 doi: 10.1007/s00401-020-02172-4 pmcid: 7540943
Roland, B. P. et al. Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs. J. Biol. Chem. 294, 1794–1806 (2019).
pubmed: 30530492 doi: 10.1074/jbc.RA118.005876
Sigruener, A. et al. Lipidomic and metabolic changes in the P4-type ATPase ATP10D deficient C57BL/6J wild type mice upon rescue of ATP10D function. PLoS ONE 12, e0178368 (2017).
pubmed: 28542499 doi: 10.1371/journal.pone.0178368 pmcid: 5444826
Charlesworth, G. et al. Mutations in ANO3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis. Am. J. Hum. Genet. 91, 1041–1050 (2012).
pubmed: 23200863 doi: 10.1016/j.ajhg.2012.10.024 pmcid: 3516598
Jun, I. et al. ANO9/TMEM16J promotes tumourigenesis via EGFR and is a novel therapeutic target for pancreatic cancer. Br. J. Cancer 117, 1798–1809 (2017).
pubmed: 29024940 doi: 10.1038/bjc.2017.355 pmcid: 5729472
Li, C., Cai, S., Wang, X. & Jiang, Z. Identification and characterization of ANO9 in stage II and III colorectal carcinoma. Oncotarget 6, 29324–29334 (2015).
pubmed: 26317553 doi: 10.18632/oncotarget.4979 pmcid: 4745729
Chrysanthou, A., Ververis, A. & Christodoulou, K. ANO10 function in health and disease. Cerebellum https://doi.org/10.1007/s12311-022-01395-3 (2022).
doi: 10.1007/s12311-022-01395-3 pubmed: 35648332 pmcid: 10126014
Chung, J. et al. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER–plasma membrane contacts. Science 349, 428–432 (2015).
pubmed: 26206935 doi: 10.1126/science.aab1370 pmcid: 4638224
Pinot, M. et al. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science 345, 693–697 (2014).
pubmed: 25104391 doi: 10.1126/science.1255288
Corbalán-García, S. & Gómez-Fernández, J. C. Classical protein kinases C are regulated by concerted interaction with lipids: the importance of phosphatidylinositol-4,5-bisphosphate. Biophys. Rev. 6, 3–14 (2013).
pubmed: 28509956 doi: 10.1007/s12551-013-0125-z pmcid: 5427809
Zhou, Y. et al. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science 349, 873–876 (2015).
pubmed: 26293964 doi: 10.1126/science.aaa5619 pmcid: 4687752
Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213 (2008).
pubmed: 18187657 doi: 10.1126/science.1152066
Yeung, T. et al. Receptor activation alters inner surface potential during phagocytosis. Science 313, 347–351 (2006).
pubmed: 16857939 doi: 10.1126/science.1129551
Fairn, G. D., Hermansson, M., Somerharju, P. & Grinstein, S. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity. Nat. Cell Biol. 13, 1424–1430 (2011).
pubmed: 21964439 doi: 10.1038/ncb2351
Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).
pubmed: 27383986 doi: 10.1038/nature18629 pmcid: 5539988
Deng, W. et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature 602, 496–502 (2022).
pubmed: 35110732 doi: 10.1038/s41586-021-04384-4 pmcid: 9703647

Auteurs

Takaharu Sakuragi (T)

Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.

Shigekazu Nagata (S)

Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan. snagata@ifrec.osaka-u.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH