Bacteriophage Adsorption: Likelihood of Virion Encounter with Bacteria and Other Factors Affecting Rates.

adsorption rate constant bacteriophage therapy biocontrol biofilm mass action phage–antibiotic synergy sorptive scavenging

Journal

Antibiotics (Basel, Switzerland)
ISSN: 2079-6382
Titre abrégé: Antibiotics (Basel)
Pays: Switzerland
ID NLM: 101637404

Informations de publication

Date de publication:
07 Apr 2023
Historique:
received: 25 02 2023
revised: 29 03 2023
accepted: 05 04 2023
medline: 28 4 2023
pubmed: 28 4 2023
entrez: 28 4 2023
Statut: epublish

Résumé

For ideal gasses, the likelihood of collision of two molecules is a function of concentrations as well as environmental factors such as temperature. This too is the case for particles diffusing within liquids. Two such particles are bacteria and their viruses, the latter called bacteriophages or phages. Here, I review the basic process of predicting the likelihoods of phage collision with bacteria. This is a key step governing rates of phage-virion adsorption to their bacterial hosts, thereby underlying a large fraction of the potential for a given phage concentration to affect a susceptible bacterial population. Understanding what can influence those rates is very relevant to appreciating both phage ecology and the phage therapy of bacterial infections, i.e., where phages are used to augment or replace antibiotics; so too adsorption rates are highly important for predicting the potential for phage-mediated biological control of environmental bacteria. Particularly emphasized here, however, are numerous complications on phage adsorption rates beyond as dictated by the ideals of standard adsorption theory. These include movements other than due to diffusion, various hindrances to diffusive movement, and the influence of assorted heterogeneities. Considered chiefly are the biological consequences of these various phenomena rather than their mathematical underpinnings.

Identifiants

pubmed: 37107086
pii: antibiotics12040723
doi: 10.3390/antibiotics12040723
pmc: PMC10135360
pii:
doi:

Types de publication

Journal Article Review

Langues

eng

Subventions

Organisme : United States Public Health Service
ID : R21AI156304
Organisme : United States Public Health Service
ID : R01AI169865

Références

Jpn J Vet Res. 1968 Dec;16(4):137-43
pubmed: 5305675
Virology. 1965 Jul;26:419-40
pubmed: 14319715
Appl Microbiol Biotechnol. 2022 Apr;106(7):2299-2310
pubmed: 35312824
Phage (New Rochelle). 2022 Jun 1;3(2):95-97
pubmed: 36157282
Pharmacotherapy. 2020 Feb;40(2):153-168
pubmed: 31872889
Evolution. 2012 Nov;66(11):3485-94
pubmed: 23106712
J Biomed Sci. 2022 Mar 30;29(1):23
pubmed: 35354477
Chemotherapy. 1993 Jul-Aug;39(4):272-7
pubmed: 8325129
Biophys J. 1992 Jun;61(6):1540-9
pubmed: 1617137
J Virol. 1969 Mar;3(3):343-9
pubmed: 4889473
Methods Mol Biol. 2018;1681:41-47
pubmed: 29134585
J Gen Microbiol. 1963 Jul;32:61-7
pubmed: 14045524
mBio. 2019 Jun 4;10(3):
pubmed: 31164468
ISME J. 2022 May;16(5):1275-1283
pubmed: 34903848
Front Microbiol. 2019 Jul 05;10:1473
pubmed: 31333609
mBio. 2013 Feb 19;4(1):e00362-12
pubmed: 23422409
Viruses. 2020 Apr 07;12(4):
pubmed: 32272774
J Virol. 2002 Jun;76(11):5557-64
pubmed: 11991984
Enzyme Microb Technol. 1993 Dec;15(12):1057-62
pubmed: 7505595
Genetics. 2002 Dec;162(4):1525-32
pubmed: 12524329
FEMS Microbiol Lett. 2014 Apr;353(1):63-8
pubmed: 24822278
AIMS Microbiol. 2017 Aug 4;3(3):649-688
pubmed: 31294181
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10771-6
pubmed: 23690590
Arch Virol. 2018 Jul;163(7):1941-1948
pubmed: 29550930
Ann Microbiol. 2010 Mar;60(1):121-127
pubmed: 20351763
Biophys J. 1977 Nov;20(2):193-219
pubmed: 911982
Nat Rev Microbiol. 2022 Mar;20(3):161-173
pubmed: 34548639
BMC Microbiol. 2009 Jul 23;9:148
pubmed: 19627589
Biotechnol Prog. 2012 Mar-Apr;28(2):319-26
pubmed: 22058083
Clin Hemorheol Microcirc. 2008;39(1-4):243-6
pubmed: 18503132
J Gen Physiol. 1940 May 20;23(5):631-42
pubmed: 19873179
Appl Environ Microbiol. 2018 Oct 30;84(22):
pubmed: 30217844
Microbiology (Reading). 1997 Jan;143 ( Pt 1):179-185
pubmed: 9025292
J Mol Biol. 1976 May 25;103(3):521-36
pubmed: 181582
Front Microbiol. 2019 Jun 03;10:1171
pubmed: 31214137
Phage (New Rochelle). 2022 Jun 1;3(2):98-111
pubmed: 36148139
Environ Sci Technol. 2021 Feb 16;55(4):2462-2472
pubmed: 33381966
Proc Biol Sci. 2006 Nov 7;273(1602):2703-12
pubmed: 17015317
BMC Evol Biol. 2009 Oct 05;9:241
pubmed: 19804637
PLoS One. 2014 Dec 31;9(12):e116235
pubmed: 25551763
Microbiol Res. 2020 Jan;230:126344
pubmed: 31561173
Viruses. 2012 May;4(5):663-87
pubmed: 22754643
J Theor Biol. 2001 Jan 7;208(1):37-48
pubmed: 11162051
Virology. 2015 Nov;485:355-62
pubmed: 26331682
Genetics. 2008 Sep;180(1):471-82
pubmed: 18757924
J Biol Chem. 1946 Sep;165(1):259-70
pubmed: 21001207
Antibiotics (Basel). 2022 Apr 25;11(5):
pubmed: 35625214
AIMS Microbiol. 2017 Mar 31;3(2):186-226
pubmed: 31294157
BMC Microbiol. 2015 Nov 04;15:255
pubmed: 26531808
Pharmaceuticals (Basel). 2021 Nov 15;14(11):
pubmed: 34832944
Clin Pharmacol Ther. 2000 Sep;68(3):225-30
pubmed: 11014403
Viruses. 2019 Oct 16;11(10):
pubmed: 31623057
Biochim Biophys Acta. 1952 Mar;8(3):260-9
pubmed: 14934737
Appl Environ Microbiol. 2012 Dec;78(23):8227-33
pubmed: 23001655
Antibiotics (Basel). 2023 Jan 25;12(2):
pubmed: 36830158
J Bacteriol. 2012 Sep;194(18):5012-9
pubmed: 22797755
Infect Drug Resist. 2021 Nov 30;14:5041-5055
pubmed: 34876823
Proc Biol Sci. 2013 Nov 13;281(1774):20132563
pubmed: 24225463
Med Res Rev. 2019 Sep;39(5):2000-2025
pubmed: 30887551
Bioprocess Biosyst Eng. 2010 Sep;33(7):823-31
pubmed: 20066440
Front Microbiol. 2018 Sep 28;9:2348
pubmed: 30323804
Proc Natl Acad Sci U S A. 1975 Sep;72(9):3701-5
pubmed: 242007
Nat Rev Microbiol. 2008 Mar;6(3):199-210
pubmed: 18264116
FEMS Microbiol Lett. 2016 Feb;363(4):
pubmed: 26755501
PLoS Genet. 2015 Nov 19;11(11):e1005667
pubmed: 26583926
Appl Environ Microbiol. 1995 Apr;61(4):1520-6
pubmed: 7747969
Int J Biol Sci. 2021 Aug 18;17(13):3573-3582
pubmed: 34512166
Genetics. 1946 Nov;31(6):620-40
pubmed: 17247224
Commun Biol. 2021 Jan 19;4(1):87
pubmed: 33469108
Cell. 2023 Jan 5;186(1):17-31
pubmed: 36608652
Curr Pharm Biotechnol. 2010 Jan;11(1):28-47
pubmed: 20214606
J Theor Biol. 1964 May;6(3):413-31
pubmed: 5875213
ISME J. 2020 Aug;14(8):2007-2018
pubmed: 32358533
Appl Environ Microbiol. 2006 Mar;72(3):1974-9
pubmed: 16517645
Viruses. 2022 Jan 20;14(2):
pubmed: 35215789
FEMS Microbiol Rev. 2013 Nov;37(6):849-71
pubmed: 23480406
Bacteriol Rev. 1958 Mar;22(1):46-73
pubmed: 13522509
Appl Environ Microbiol. 2015 Feb;81(3):1132-8
pubmed: 25452284
Nat Microbiol. 2020 Sep;5(9):1170-1181
pubmed: 32601452
Bioessays. 2016 Aug;38(8):782-90
pubmed: 27273675
PLoS One. 2007 Aug 29;2(8):e799
pubmed: 17726529
Biofouling. 2004 Jun;20(3):133-8
pubmed: 15545062
Methods Mol Biol. 2009;501:175-202
pubmed: 19066822
Antibiotics (Basel). 2021 Feb 09;10(2):
pubmed: 33572473
Pharmaceuticals (Basel). 2015 Sep 09;8(3):559-89
pubmed: 26371011
FEMS Microbiol Lett. 2016 Feb;363(3):
pubmed: 26738755
Microorganisms. 2021 Jan 12;9(1):
pubmed: 33445453
Nat Rev Microbiol. 2013 Mar;11(3):194-204
pubmed: 23385786
PLoS Biol. 2022 Dec 22;20(12):e3001913
pubmed: 36548227
Commun Biol. 2020 Nov 19;3(1):691
pubmed: 33214665
J Gen Physiol. 1952 May;36(1):39-56
pubmed: 12981234
Cell Host Microbe. 2019 Jul 10;26(1):15-21
pubmed: 31295420
FEMS Immunol Med Microbiol. 2012 Jul;65(2):395-8
pubmed: 22524448
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13675-80
pubmed: 26483471
mSystems. 2020 Jun 23;5(3):
pubmed: 32576653
FEMS Microbiol Rev. 2022 Jan 18;46(1):
pubmed: 34289033
NPJ Biofilms Microbiomes. 2019 Nov 8;5(1):35
pubmed: 31728202
Biol Rev Camb Philos Soc. 1946 Jan;21:30-40
pubmed: 21016941

Auteurs

Stephen Tobias Abedon (ST)

Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA.

Classifications MeSH