Bone microstructure and volumetric bone mineral density in patients with global sagittal malalignment.
Bone microarchitecture
Microcomputed tomography
Osteoporosis
Quantitative computed tomography
Volumetric bone mineral density
Journal
European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
ISSN: 1432-0932
Titre abrégé: Eur Spine J
Pays: Germany
ID NLM: 9301980
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
received:
15
08
2022
accepted:
12
03
2023
revised:
28
02
2023
medline:
5
6
2023
pubmed:
28
4
2023
entrez:
28
4
2023
Statut:
ppublish
Résumé
Sagittal spinal malalignment often leads to surgical realignment, which is associated with major complications. Low bone mineral density (BMD) and impaired bone microstructure are risk factors for instrumentation failure. This study aims to demonstrate differences in volumetric BMD and bone microstructure between normal and pathological sagittal alignment and to determine the relationships among vBMD, microstructure, sagittal spinal and spinopelvic alignment. A retrospective, cross-sectional study of patients who underwent lumbar fusion for degeneration was conducted. The vBMD of the lumbar spine was assessed by quantitative computed tomography. Bone biopsies were evaluated using microcomputed tomography (μCT). C7-S1 sagittal vertical axis (SVA; ≥ 50 mm malalignment) and spinopelvic alignment were measured. Univariate and multivariable linear regression analysis evaluated associations among the alignment, vBMD and μCT parameters. A total of 172 patients (55.8% female, 63.3 years, BMI 29.7 kg/m Sagittal malalignment is associated with lower lumbar vBMD and trabecular microstructure. Lumbar vBMD was significantly lower in patients with malalignment. These findings warrant attention, as malalignment patients may be at a higher risk of surgery-related complications due to impaired bone. Standardized preoperative assessment of vBMD may be advisable.
Identifiants
pubmed: 37115283
doi: 10.1007/s00586-023-07654-z
pii: 10.1007/s00586-023-07654-z
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
2228-2237Subventions
Organisme : NCATS NIH HHS
ID : UL1TR002384
Pays : United States
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F (2005) The impact of positive sagittal balance in adult spinal deformity. Spine 30(18):2024–2029. https://doi.org/10.1097/01.brs.0000179086.30449.96
doi: 10.1097/01.brs.0000179086.30449.96
pubmed: 16166889
Schwab FJ, Blondel B, Bess S, Hostin R, Shaffrey CI, Smith JS et al (2013) Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine 38(13):E803–E812. https://doi.org/10.1097/BRS.0b013e318292b7b9
doi: 10.1097/BRS.0b013e318292b7b9
pubmed: 23722572
Pellisé F, Vila-Casademunt A, Ferrer M, Domingo-Sàbat M, Bagó J, Pérez-Grueso FJ et al (2015) Impact on health related quality of life of adult spinal deformity (ASD) compared with other chronic conditions. Eur Spine J 24(1):3–11
doi: 10.1007/s00586-014-3542-1
pubmed: 25218732
Good CR, Auerbach JD, O’Leary PT, Schuler TC (2011) Adult spine deformity. Curr Rev Musculoskelet Med 4(4):159–167
doi: 10.1007/s12178-011-9101-z
pubmed: 22021017
pmcid: 3261243
Youssef JA, Orndorff DO, Patty CA, Scott MA, Price HL, Hamlin LF et al (2013) Current status of adult spinal deformity. Glob Spine J 3(1):51–62
doi: 10.1055/s-0032-1326950
Yadla S, Maltenfort MG, Ratliff JK, Harrop JS (2010) Adult scoliosis surgery outcomes: a systematic review. Neurosurg Focus 28(3):E3
doi: 10.3171/2009.12.FOCUS09254
pubmed: 20192664
Daubs MD, Lenke LG, Cheh G, Stobbs G, Bridwell KH (2007) Adult spinal deformity surgery: complications and outcomes in patients over age 60. Spine 32(20):2238–2244. https://doi.org/10.1097/BRS.0b013e31814cf24a
doi: 10.1097/BRS.0b013e31814cf24a
pubmed: 17873817
Drazin D, Shirzadi A, Rosner J, Eboli P, Safee M, Baron EM et al (2011) Complications and outcomes after spinal deformity surgery in the elderly: review of the existing literature and future directions. Neurosurg Focus 31(4):E3
doi: 10.3171/2011.7.FOCUS11145
pubmed: 21961866
Martin BI, Mirza SK, Spina N, Spiker WR, Lawrence B, Brodke DS (2019) Trends in lumbar fusion procedure rates and associated hospital costs for degenerative spinal diseases in the united states, 2004 to 2015. Spine 44(5):369–376. https://doi.org/10.1097/BRS.0000000000002822
doi: 10.1097/BRS.0000000000002822
pubmed: 30074971
DeWald CJ, Stanley T (2006) Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine 31(Suppl):S144–S151. https://doi.org/10.1097/01.brs.0000236893.65878.39
doi: 10.1097/01.brs.0000236893.65878.39
pubmed: 16946632
Patrick T, BridwellLenkeGoodPichelmannBuchowski KHLGCRMAJM et al (2009) Risk factors and outcomes for catastrophic failures at the top of long pedicle screw constructs: a matched cohort analysis performed at a single center. Spine 34(20):2134–2139. https://doi.org/10.1097/BRS.0b013e3181b2e17e
doi: 10.1097/BRS.0b013e3181b2e17e
Schreiber JJ, Hughes AP, Taher F, Girardi FP (2014) An association can be found between hounsfield units and success of lumbar spine fusion. Hss j 10(1):25–29
doi: 10.1007/s11420-013-9367-3
pubmed: 24482618
Oh KW, Lee JH, Lee JH, Lee DY, Shim HJ (2017) The correlation between cage subsidence, bone mineral density, and clinical results in posterior lumbar interbody fusion. Clin Spine Surg 30(6):E683–E689
doi: 10.1097/BSD.0000000000000315
pubmed: 28632554
Matsumoto T, Okuda S, Maeno T, Yamashita T, Yamasaki R, Sugiura T et al (2017) Spinopelvic sagittal imbalance as a risk factor for adjacent-segment disease after single-segment posterior lumbar interbody fusion. J Neurosurg Spine 26(4):435–440
doi: 10.3171/2016.9.SPINE16232
pubmed: 28059683
Seeman E, Delmas PD (2006) Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261
doi: 10.1056/NEJMra053077
pubmed: 16723616
Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381
doi: 10.1007/s00198-014-2794-2
pubmed: 25182228
pmcid: 4176573
Dipaola CP, Bible JE, Biswas D, Dipaola M, Grauer JN, Rechtine GR (2009) Survey of spine surgeons on attitudes regarding osteoporosis and osteomalacia screening and treatment for fractures, fusion surgery, and pseudoarthrosis. Spine J 9(7):537–544
doi: 10.1016/j.spinee.2009.02.005
pubmed: 19328744
Rand T, Seidl G, Kainberger F, Resch A, Hittmair K, Schneider B et al (1997) Impact of spinal degenerative changes on the evaluation of bone mineral density with dual energy X-ray absorptiometry (DXA]. Calcif Tissue Int 60(5):430–433
doi: 10.1007/s002239900258
pubmed: 9115160
Simonelli C, Adler RA, Blake GM, Caudill JP, Khan A, Leib E et al (2008) Dual-energy X-ray absorptiometry technical issues: the 2007 ISCD official positions. J Clin Densitom 11(1):109–122
doi: 10.1016/j.jocd.2007.12.009
pubmed: 18442756
Guglielmi G, Floriani I, Torri V, Li J, van Kuijk C, Genant HK et al (2005) Effect of spinal degenerative changes on volumetric bone mineral density of the central skeleton as measured by quantitative computed tomography. Acta Radiol 46(3):269–275
doi: 10.1080/02841850510012661
pubmed: 15981723
Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486
doi: 10.1002/jbmr.141
pubmed: 20533309
Bao J, Zou D, Li W (2021) Characteristics of the DXA measurements in patients undergoing lumbar fusion for lumbar degenerative diseases: a retrospective analysis of over 1000 patients. Clin Interv Aging 16:1131–1137
doi: 10.2147/CIA.S300873
pubmed: 34168436
pmcid: 8218240
Steiger P, Block JE, Steiger S, Heuck AF, Friedlander A, Ettinger B et al (1990) Spinal bone mineral density measured with quantitative CT: effect of region of interest, vertebral level, and technique. Radiology 175(2):537–543
doi: 10.1148/radiology.175.2.2326479
pubmed: 2326479
Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4(4):493–500
doi: 10.1097/00004728-198008000-00018
pubmed: 7391292
Haffer H, Muellner M, Chiapparelli E, Moser M, Dodo Y, Zhu J et al (2022) Bone quality in patients with osteoporosis undergoing lumbar fusion surgery: analysis of the MRI-based vertebral bone quality score and the bone microstructure derived from microcomputed tomography. Spine J 22(10):1642–1650. https://doi.org/10.1016/j.spinee.2022.05.008
doi: 10.1016/j.spinee.2022.05.008
pubmed: 35675866
Brown JK, Timm W, Bodeen G, Chason A, Perry M, Vernacchia F et al (2017) Asynchronously calibrated quantitative bone densitometry. J Clin Densitom 20(2):216–225
doi: 10.1016/j.jocd.2015.11.001
pubmed: 26781430
Wang L, Su Y, Wang Q, Duanmu Y, Yang M, Yi C et al (2017) Validation of asynchronous quantitative bone densitometry of the spine: accuracy, short-term reproducibility, and a comparison with conventional quantitative computed tomography. Sci Rep 7(1):6284
doi: 10.1038/s41598-017-06608-y
pubmed: 28740145
pmcid: 5524691
Pickhardt PJ, Bodeen G, Brett A, Brown JK, Binkley N (2015) Comparison of femoral neck BMD evaluation obtained using Lunar DXA and QCT with asynchronous calibration from CT colonography. J Clin Densitom 18(1):5–12
doi: 10.1016/j.jocd.2014.03.002
pubmed: 24880495
Shepherd JA, Schousboe JT, Broy SB, Engelke K, Leslie WD (2015) Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J Clin Densitom 18(3):274–286. https://doi.org/10.1016/j.jocd.2015.06.013
doi: 10.1016/j.jocd.2015.06.013
pubmed: 26277847
Radiology ACo (2018) ACR–SPR–SSR practice parameter for the performance of musculoskeletal quantitative computed tomography (QCT] 2018 revised [Available from: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/qct.pdf
Schwab F, Patel A, Ungar B, Farcy J-P, Lafage V (2010) adult spinal deformity—postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine 35(25):2224–2231. https://doi.org/10.1097/BRS.0b013e3181ee6bd4
doi: 10.1097/BRS.0b013e3181ee6bd4
pubmed: 21102297
Dai J, Yu X, Huang S, Fan L, Zhu G, Sun H et al (2015) Relationship between sagittal spinal alignment and the incidence of vertebral fracture in menopausal women with osteoporosis: a multicenter longitudinal follow-up study. Eur Spine J 24(4):737–743
doi: 10.1007/s00586-014-3637-8
pubmed: 25374300
Lee JS, Lee HS, Shin JK, Goh TS, Son SM (2013) Prediction of sagittal balance in patients with osteoporosis using spinopelvic parameters. Eur Spine J 22(5):1053–1058
doi: 10.1007/s00586-013-2672-1
pubmed: 23354778
pmcid: 3657054
Cho Y, Lee G, Aguinaldo J, Lee KJ, Kim K (2015) Correlates of bone mineral density and sagittal spinal balance in the aged. Ann Rehabil Med 39(1):100–107
doi: 10.5535/arm.2015.39.1.100
pubmed: 25750878
pmcid: 4351480
Wolff J (1892) Das gesetz der transformation der knochen. Verlag von August Hirschwald, Berlin
Le Huec JC, Charosky S, Barrey C, Rigal J, Aunoble S (2011) Sagittal imbalance cascade for simple degenerative spine and consequences: algorithm of decision for appropriate treatment. Eur Spine J 20(Suppl 5):699–703
doi: 10.1007/s00586-011-1938-8
pubmed: 21811823
pmcid: 3175932
Pavlovic A, Nichols DL, Sanborn CF, Dimarco NM (2013) Relationship of thoracic kyphosis and lumbar lordosis to bone mineral density in women. Osteoporos Int 24(8):2269–2273
doi: 10.1007/s00198-013-2296-7
pubmed: 23400251
Okano I, Carlson BB, Chiapparelli E, Salzmann SN, Winter F, Shirahata T et al (2020) Local mechanical environment and spinal trabecular volumetric bone mineral density measured by quantitative computed tomography: a study on lumbar lordosis. World Neurosurg 135:e286–e292
doi: 10.1016/j.wneu.2019.11.139
pubmed: 31790845
Papadakis M, Papagelopoulos P, Papadokostakis G, Sapkas G, Damilakis J, Katonis P (2011) The impact of bone mineral density on the degree of curvature of the lumbar spine. J Musculoskelet Neuronal Interact 11(1):46–51
pubmed: 21364274
Barrey C, Roussouly P, Le Huec JC, D’Acunzi G, Perrin G (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22(Suppl 6):S834–S841
doi: 10.1007/s00586-013-3030-z
pubmed: 24052406
Lin T, Lu J, Zhang Y, Wang Z, Chen G, Gu Y et al (2021) Does spinal sagittal imbalance lead to future vertebral compression fractures in osteoporosis patients? Spine J 21(8):1362–1375
doi: 10.1016/j.spinee.2021.03.014
pubmed: 33766788
Matsunaga T, Miyagi M, Nakazawa T, Murata K, Kawakubo A, Fujimaki H et al (2021) Prevalence and characteristics of spinal sagittal malalignment in patients with osteoporosis. J Clin Med 10(13):2827. https://doi.org/10.3390/jcm10132827
doi: 10.3390/jcm10132827
pubmed: 34206898
pmcid: 8268752
Schwab F, Ungar B, Blondel B, Buchowski J, Coe J, Deinlein D, DeWald C, Mehdian H, Shaffrey C, Tribus C, Lafage V (2012) Scoliosis research society—schwab adult spinal deformity classification: a validation study. Spine 37(12):1077–1082. https://doi.org/10.1097/BRS.0b013e31823e15e2
doi: 10.1097/BRS.0b013e31823e15e2
pubmed: 22045006
Lafage V, Schwab F, Patel A, Hawkinson N, Farcy J-P (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine 34(17):E599–E606. https://doi.org/10.1097/BRS.0b013e3181aad219
doi: 10.1097/BRS.0b013e3181aad219
pubmed: 19644319
Bjerke BT, Zarrabian M, Aleem IS, Fogelson JL, Currier BL, Freedman BA et al (2018) Incidence of osteoporosis-related complications following posterior lumbar fusion. Glob Spine J 8(6):563–569
doi: 10.1177/2192568217743727
Yilgor C, Sogunmez N, Boissiere L, Yavuz Y, Obeid I, Kleinstück F et al (2017) Global alignment and proportion (GAP] score: development and validation of a new method of analyzing spinopelvic alignment to predict mechanical complications after adult spinal deformity surgery. J Bone Joint Surg Am 99(19):1661–1672
doi: 10.2106/JBJS.16.01594
pubmed: 28976431
Noh SH, Ha Y, Obeid I, Park JY, Kuh SU, Chin DK et al (2020) Modified global alignment and proportion scoring with body mass index and bone mineral density (GAPB) for improving predictions of mechanical complications after adult spinal deformity surgery. Spine J 20(5):776–784
doi: 10.1016/j.spinee.2019.11.006
pubmed: 31734452
Kolz JM, Freedman BA, Nassr AN (2021) The value of cement augmentation in patients with diminished bone quality undergoing thoracolumbar fusion surgery: a review. Glob Spine J 11(1_suppl):37S-44S. https://doi.org/10.1177/2192568220965526
doi: 10.1177/2192568220965526
Salzmann SN, Shirahata T, Yang J, Miller CO, Carlson BB, Rentenberger C et al (2019) Regional bone mineral density differences measured by quantitative computed tomography: does the standard clinically used L1–L2 average correlate with the entire lumbosacral spine? Spine J 19(4):695–702
doi: 10.1016/j.spinee.2018.10.007
pubmed: 30343044
Britton JM, Davie MW (1990) Mechanical properties of bone from iliac crest and relationship to L5 vertebral bone. Bone 11(1):21–28
doi: 10.1016/8756-3282(90)90067-9
pubmed: 2331427
Dempster DW, Ferguson-Pell MW, Mellish RW, Cochran GV, Xie F, Fey C et al (1993) Relationships between bone structure in the iliac crest and bone structure and strength in the lumbar spine. Osteoporos Int 3(2):90–96
doi: 10.1007/BF01623379
pubmed: 8453196