Impaired dynamics of precapillary sphincters and pericytes at first-order capillaries predict reduced neurovascular function in the aging mouse brain.
Journal
Nature aging
ISSN: 2662-8465
Titre abrégé: Nat Aging
Pays: United States
ID NLM: 101773306
Informations de publication
Date de publication:
02 2023
02 2023
Historique:
received:
16
06
2021
accepted:
20
12
2022
medline:
1
5
2023
pubmed:
29
4
2023
entrez:
28
4
2023
Statut:
ppublish
Résumé
The microvascular inflow tract, comprising the penetrating arterioles, precapillary sphincters and first-order capillaries, is the bottleneck for brain blood flow and energy supply. Exactly how aging alters the structure and function of the microvascular inflow tract remains unclear. By in vivo four-dimensional two-photon imaging, we reveal an age-dependent decrease in vaso-responsivity accompanied by a decrease in vessel density close to the arterioles and loss of vascular mural cell processes, although the number of mural cell somas and their alpha smooth muscle actin density were preserved. The age-related reduction in vascular reactivity was mostly pronounced at precapillary sphincters, highlighting their crucial role in capillary blood flow regulation. Mathematical modeling revealed impaired pressure and flow control in aged mice during vasoconstriction. Interventions that preserve dynamics of cerebral blood vessels may ameliorate age-related decreases in blood flow and prevent brain frailty.
Identifiants
pubmed: 37118115
doi: 10.1038/s43587-022-00354-1
pii: 10.1038/s43587-022-00354-1
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
173-184Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Aanerud, J. et al. Brain energy metabolism and blood flow differences in healthy aging. J. Cereb. Blood Flow Metab. 32, 1177–1187 (2012).
doi: 10.1038/jcbfm.2012.18
pubmed: 22373642
pmcid: 3390816
Moeini, M. et al. Compromised microvascular oxygen delivery increases brain tissue vulnerability with age. Sci. Rep. 8, 8219 (2018).
doi: 10.1038/s41598-018-26543-w
pubmed: 29844478
pmcid: 5974237
De Silva, T. M. & Faraci, F. M. Contributions of aging to cerebral small vessel disease. Annu. Rev. Physiol. 82, 275–295 (2020).
doi: 10.1146/annurev-physiol-021119-034338
pubmed: 31618600
Chen, J. J. Functional MRI of brain physiology in aging and neurodegenerative diseases. NeuroImage 187, 209–225 (2019).
doi: 10.1016/j.neuroimage.2018.05.050
pubmed: 29793062
Esopenko, C. & Levine, B. Aging, neurodegenerative disease, and traumatic brain injury: the role of neuroimaging. J. Neurotrauma 32, 209–220 (2015).
doi: 10.1089/neu.2014.3506
pubmed: 25192426
pmcid: 4321975
Chen, R.-L., Balami, J. S., Esiri, M. M., Chen, L.-K. & Buchan, A. M. Ischemic stroke in the elderly: an overview of evidence. Nat. Rev. Neurol. 6, 256–265 (2010).
doi: 10.1038/nrneurol.2010.36
pubmed: 20368741
Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).
doi: 10.1016/j.neuron.2010.09.043
pubmed: 21040844
pmcid: 3056408
Grant, R. I. et al. Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex. J. Cereb. Blood Flow Metab. 39, 411–425 (2019).
doi: 10.1177/0271678X17732229
pubmed: 28933255
Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).
doi: 10.1038/nature13165
pubmed: 24670647
pmcid: 3976267
Grubb, S. et al. Precapillary sphincters maintain perfusion in the cerebral cortex. Nat. Commun. 11, 395 (2020).
doi: 10.1038/s41467-020-14330-z
pubmed: 31959752
pmcid: 6971292
Zambach, S. A. et al. Precapillary sphincters and pericytes at first-order capillaries as key regulators for brain capillary perfusion. Proc. Natl Acad. Sci. USA 118, e2023749118 (2021).
doi: 10.1073/pnas.2023749118
pubmed: 34155102
pmcid: 8255959
West, K. L. et al. BOLD hemodynamic response function changes significantly with healthy aging. NeuroImage 188, 198–207 (2019).
doi: 10.1016/j.neuroimage.2018.12.012
pubmed: 30529628
Diaz-Otero, J. M., Garver, H., Fink, G. D., Jackson, W. F. & Dorrance, A. M. Aging is associated with changes to the biomechanical properties of the posterior cerebral artery and parenchymal arterioles. Am. J. Physiol. Heart Circ. Physiol. 310, H365–H375 (2016).
doi: 10.1152/ajpheart.00562.2015
pubmed: 26637558
Fonck, E. et al. Effect of aging on elastin functionality in human cerebral arteries. Stroke 40, 2552–2556 (2009).
doi: 10.1161/STROKEAHA.108.528091
pubmed: 19478233
Bolton, T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59, 606–718 (1979).
doi: 10.1152/physrev.1979.59.3.606
pubmed: 37533
Boswell-Smith, V., Spina, D. & Page, C. P. Phosphodiesterase inhibitors. Br. J. Pharmacol. 147, S252–S257 (2006).
doi: 10.1038/sj.bjp.0706495
pubmed: 16402111
pmcid: 1760738
Chappie, T. A., Helal, C. J. & Hou, X. Current landscape of phosphodiesterase 10A (PDE10A) inhibition. J. Med. Chem. 55, 7299–7331 (2012).
doi: 10.1021/jm3004976
pubmed: 22834877
Mandalà, M., Pedatella, A. L., Morales Palomares, S., Cipolla, M. J. & Osol, G. Maturation is associated with changes in rat cerebral artery structure, biomechanical properties and tone. Acta Physiol. 205, 363–371 (2012).
doi: 10.1111/j.1748-1716.2011.02406.x
Toth, P. et al. Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. Am. J. Physiol. Heart. Circ. Physiol. 306, H299–H308 (2014).
doi: 10.1152/ajpheart.00744.2013
pubmed: 24322615
Faraci, F. M., Brian, J. E. Jr & Heistad, D. D. Response of cerebral blood vessels to an endogenous inhibitor of nitric oxide synthase. Am. J. Physiol. 269, H1522–H1527 (1995).
pubmed: 7503244
Davenport, A. P. et al. Endothelin. Pharmacol Rev. 68, 357–418 (2016).
doi: 10.1124/pr.115.011833
pubmed: 26956245
pmcid: 4815360
Bennett, H. C. & Kim, Y. Pericytes across the lifetime in the central nervous system. Front. Cell Neurosci. 15, 627291 (2021).
doi: 10.3389/fncel.2021.627291
pubmed: 33776651
pmcid: 7994897
Ximerakis, M. et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 22, 1696–1708 (2019).
doi: 10.1038/s41593-019-0491-3
pubmed: 31551601
Kirst, C. et al. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell 180, 780–795 (2020).
doi: 10.1016/j.cell.2020.01.028
pubmed: 32059781
Young, A. P. et al. Endothelin B receptor dysfunction mediates elevated myogenic tone in cerebral arteries from aged male Fischer 344 rats. Geroscience 43, 1447–1463 (2021).
doi: 10.1007/s11357-020-00309-7
pubmed: 33403617
pmcid: 8190196
Springo, Z. et al. Aging impairs myogenic adaptation to pulsatile pressure in mouse cerebral arteries. J. Cereb. Blood Flow Metab. 35, 527–530 (2015).
doi: 10.1038/jcbfm.2014.256
pubmed: 25605292
pmcid: 4420893
Toth, P. et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J. Cereb. Blood Flow Metab. 33, 1732–1742 (2013).
doi: 10.1038/jcbfm.2013.143
pubmed: 23942363
pmcid: 3824186
Ranki, H. J., Crawford, R. M., Budas, G. R. & Jovanovic, A. Ageing is associated with a decrease in the number of sarcolemmal ATP-sensitive K
doi: 10.1016/S0047-6374(01)00415-8
pubmed: 11850031
Tricarico, D. & Camerino, D. C. ATP-sensitive K
pubmed: 7969056
Taddei, S. et al. Age-related reduction of NO availability and oxidative stress in humans. Hypertension 38, 274–279 (2001).
doi: 10.1161/01.HYP.38.2.274
pubmed: 11509489
Donato, A. J. et al. Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am. J. Physiol. Heart. Circ. Physiol. 297, H425–H432 (2009).
doi: 10.1152/ajpheart.00689.2008
pubmed: 19465546
pmcid: 2711733
Van Der Loo, B. et al. Enhanced peroxynitrite formation is associated with vascular aging. J. Exp. Med. 192, 1731–1744 (2000).
doi: 10.1084/jem.192.12.1731
pubmed: 11120770
pmcid: 2213492
Cernadas, M. A. R. et al. Expression of constitutive and inducible nitric oxide synthases in the vascular wall of young and aging rats. Circ. Res. 83, 279–286 (1998).
doi: 10.1161/01.RES.83.3.279
pubmed: 9710120
Van Guilder, G. P., Westby, C. M., Greiner, J. J., Stauffer, B. L. & Desouza, C. A. Endothelin-1 vasoconstrictor tone increases with age in healthy men but can be reduced by regular aerobic exercise. Hypertension 50, 403–409 (2007).
doi: 10.1161/HYPERTENSIONAHA.107.088294
pubmed: 17576858
Del Ry, S., Maltinti, M., Giannessi, D., Cavallini, G. & Bergamini, E. Age-related changes in endothelin-1 receptor subtypes in rat heart. Exp. Aging Res. 34, 251–266 (2008).
doi: 10.1080/03610730802070233
pubmed: 18568982
Ungvari, Z., Tarantini, S., Donato, A. J., Galvan, V. & Csiszar, A. Mechanisms of vascular aging. Circ. Res. 123, 849–867 (2018).
doi: 10.1161/CIRCRESAHA.118.311378
pubmed: 30355080
pmcid: 6248882
Castelli, V. et al. Neuronal cells rearrangement during aging and neurodegenerative disease: metabolism, oxidative stress and organelles Dynamic. Front. Mol. Neurosci. 12, 132 (2019).
doi: 10.3389/fnmol.2019.00132
pubmed: 31191244
pmcid: 6546816
Banks, W. A., Reed, M. J., Logsdon, A. F., Rhea, E. M. & Erickson, M. A. Healthy aging and the blood–brain barrier. Nature Aging 1, 243–254 (2021).
doi: 10.1038/s43587-021-00043-5
pubmed: 34368785
pmcid: 8340949
Nikolakopoulou, A. M. et al. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat. Neurosci. 22, 1089–1098 (2019).
doi: 10.1038/s41593-019-0434-z
pubmed: 31235908
pmcid: 6668719