The impact of conflict-driven cropland abandonment on food insecurity in South Sudan revealed using satellite remote sensing.


Journal

Nature food
ISSN: 2662-1355
Titre abrégé: Nat Food
Pays: England
ID NLM: 101761102

Informations de publication

Date de publication:
12 2021
Historique:
received: 08 10 2020
accepted: 01 11 2021
medline: 1 5 2023
pubmed: 1 12 2021
entrez: 28 4 2023
Statut: ppublish

Résumé

Armed conflicts often hinder food security through cropland abandonment and restrict the collection of on-the-ground information required for targeted relief distribution. Satellite remote sensing provides a means for gathering information about disruptions during armed conflicts and assessing the food security status in conflict zones. Using ~7,500 multisource satellite images, we implemented a data-driven approach that showed a reduction in cultivated croplands in war-ravaged South Sudan by 16% from 2016 to 2018. Propensity score matching revealed a statistical relationship between cropland abandonment and armed conflicts that contributed to drastic decreases in food supply. Our analysis shows that the abandoned croplands could have supported at least a quarter of the population in the southern states of South Sudan and demonstrates that remote sensing can play a crucial role in the assessment of cropland abandonment in food-insecure regions, thereby improving the basis for timely aid provision.

Identifiants

pubmed: 37118254
doi: 10.1038/s43016-021-00417-3
pii: 10.1038/s43016-021-00417-3
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

990-996

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Assessing Cropland Abandonment in Mopti Region with Satellite Imagery (WFP, 2019).
Baumann, M., Radeloff, V. C., Avedian, V. & Kuemmerle, T. Land-use change in the Caucasus during and after the Nagorno-Karabakh conflict. Reg. Environ. Change 15, 1703–1716 (2015).
doi: 10.1007/s10113-014-0728-3
Hendrix, C. & Brinkman, H.-J. Food insecurity and conflict dynamics: causal linkages and complex feedbacks. Stabil. Int. J. Secur. Dev. 2, 26 (2013).
The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food Security and Nutrition (FAO, 2018).
Tong, X. et al. Revisiting the coupling between NDVI trends and cropland changes in the Sahel drylands: a case study in western Niger. Remote Sens. Environ. 191, 286–296 (2017).
doi: 10.1016/j.rse.2017.01.030
Prishchepov, A. V. Agricultural Land Abandonment (Oxford Bibliographies, 2020).
Witmer, F. D. W. Detecting war‐induced abandoned agricultural land in northeast Bosnia using multispectral, multitemporal Landsat TM imagery. Int. J. Remote Sens. 29, 3805–3831 (2008).
doi: 10.1080/01431160801891879
Eklund, L., Degerald, M., Brandt, M., Prishchepov, A. V. & Pilesjö, P. How conflict affects land use: agricultural activity in areas seized by the Islamic State. Environ. Res. Lett. 12, 054004 (2017).
Skakun, S., Justice, C. O., Kussul, N., Shelestov, A. & Lavreniuk, M. Satellite data reveal cropland losses in South-Eastern Ukraine under military conflict. Front. Earth Sci. 7, 305 (2019).
doi: 10.3389/feart.2019.00305
Yin, H. et al. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 246, 111873 (2020).
doi: 10.1016/j.rse.2020.111873
Blair, D., Shackleton, C. M. & Mograbi, P. J. Cropland abandonment in South African smallholder communal lands: land cover change (1950–2010) and farmer perceptions of contributing factors. Land 7, 121 (2018).
Prishchepov, A. V., Schierhorn, F. & Löw, F. Unraveling the diversity of trajectories and drivers of global agricultural land abandonment. Land 10, 97 (2021).
Næss, J. S., Cavalett, O. & Cherubini, F. The land–energy–water nexus of global bioenergy potentials from abandoned cropland. Nat. Sustain. 4, 525–536 (2021).
doi: 10.1038/s41893-020-00680-5
Raj Khanal, N. & Watanabe, T. Abandonment of agricultural land and its consequences. Mt. Res. Dev. 26, 32–40 (2006).
doi: 10.1659/0276-4741(2006)026[0032:AOALAI]2.0.CO;2
Baiphethi, M. N. & Jacobs, P. T. The contribution of subsistence farming to food security in South Africa. Agric. Econ. Res. Policy Pract. South Africa 48, 459–482 (2005).
Yin, H. et al. Agricultural abandonment and re-cultivation during and after the Chechen Wars in the northern Caucasus. Global Environ. Change 55, 149–159 (2019).
doi: 10.1016/j.gloenvcha.2019.01.005
The State of Food Security and Nutrition in the World 2017 (FAO, 2017).
Special Report: Crop and Food Security Assessment Mission to South Sudan, March 2018 (FAO, 2018).
Battersby, J. & Watson, V. Addressing food security in African cities. Nat. Sustain. 1, 153–155 (2018).
doi: 10.1038/s41893-018-0051-y
Samasse, K., Hanan, N. P., Anchang, J. Y. & Diallo, Y. A high-resolution cropland map for the West African Sahel based on high-density training data, Google Earth Engine, and locally optimized machine learning. Remote Sensing 12, 1436 (2020).
Somanathan, E., Prabhakar, R. & Mehta, B. S. Decentralization for cost-effective conservation. Proc. Natl Acad. Sci. USA 106, 4143–4147 (2009).
doi: 10.1073/pnas.0810049106
Rosenbaum, P. R. & Rubin, D. B. The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41–55 (1983).
FoodData Central (USDA, 06/13/2020); https://fdc.nal.usda.gov/index.html
Baumann, M. & Kuemmerle, T. The impacts of warfare and armed conflict on land systems. J. Land Use Sci. 11, 672–688 (2016).
doi: 10.1080/1747423X.2016.1241317
Bégué, A. et al. Remote sensing and cropping practices: a review. Remote Sensing 10, 99 (2018).
Valero, S. et al. Production of a dynamic cropland mask by processing remote sensing image series at high temporal and spatial resolutions. Remote Sens. 8, 55 (2016).
Carrasco, L., O’Neil, A. W., Daniel Morton, R. & Rowland, C. S. Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine. Remote Sens. 11, 288 (2019).
Moreno-Martínez, Á. et al. Interpolation and gap filling of Landsat reflectance time series. In Proc. IEEE International Geoscience Remote Sensing Symposium 2018, 349–352 (IEEE, 2018).
Special Report: Crop and Food Security Assessment Mission to South Sudan, March 2019 (FAO, 2019).
Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).
doi: 10.1371/journal.pone.0217148
Schleussner, C.-F., Donges, J. F., Donner, R. V. & Schellnhuber, H. J. Armed-conflict risks enhanced by climate-related disasters in ethnically fractionalized countries. Proc. Natl Acad. Sci. USA 113, 9216–9221 (2016).
doi: 10.1073/pnas.1601611113
Mach, K. J. et al. Climate as a risk factor for armed conflict. Nature 571, 193–197 (2019).
doi: 10.1038/s41586-019-1300-6
Benayas, J. R., Martins, A., Nicolau, J. M. & Schulz, J. J. Abandonment of agricultural land: an overview of drivers and consequences. CAB Rev. 2, 057 (2007).
Kamp, J. Weighing up reuse of Soviet croplands. Nature 505, 483 (2014).
doi: 10.1038/505483d
Schiermeier, Q. Soviet Union’s collapse led to massive drop in carbon emissions. Nature https://doi.org/10.1038/d41586-019-02024-6 (2019).
Huang, X., Ziniti, B. & Torbick, N. Assessing conflict driven food security in Rakhine, Myanmar with multisource imagery. Land 8, 95 (2019).
doi: 10.3390/land8060095
Chaudhary, S. et al. A synopsis of farmland abandonment and its driving factors in Nepal. Land 9, 84 (2020).
doi: 10.3390/land9030084
Special Report: Crop and Food Security Assessment Mission to South Sudan (FAO, 2017).
Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
doi: 10.1016/j.rse.2017.06.031
Murphy, S. Cloud masking of Sentinel 2 using Google Earth Engine (GitHub, 2018); https://github.com/samsammurphy/cloud-masking-sentinel2
Technical Guide: Cloud Masks (ESA, 2019); https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks
Phalke, A. R. & Özdoğan, M. Large area cropland extent mapping with Landsat data and a generalized classifier. Remote Sens. Environ. 219, 180–195 (2018).
doi: 10.1016/j.rse.2018.09.025
Inglada, J., Vincent, A., Arias, M. & Marais-Sicre, C. Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series. Remote Sens. 8, 362 (2016).
Van Tricht, K., Gobin, A., Gilliams, S. & Piccard, I. Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop mapping: a case study for Belgium. Remote Sens. 10, 1642 (2018).
sklearn.feature_selection.RFECV (SciKit, 2019); https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).
doi: 10.1016/j.rse.2014.02.015
Olofsson, P. et al. Mitigating the effects of omission errors on area and area change estimates. Remote Sens. Environ. 236, 111492 (2020).
doi: 10.1016/j.rse.2019.111492
Hu, T., Liu, J., Zheng, G., Li, Y. & Xie, B. Quantitative assessment of urban wetland dynamics using high spatial resolution satellite imagery between 2000 and 2013. Sci. Rep. 8, 7409 (2018).
Zhou, H. et al. Monitoring the change of urban wetland using high spatial resolution remote sensing data. Int. J. Remote Sens. 31, 1717–1731 (2010).
doi: 10.1080/01431160902926608
Yuan, F., Sawaya, K. E., Loeffelholz, B. C. & Bauer, M. E. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 98, 317–328 (2005).
doi: 10.1016/j.rse.2005.08.006
Prishchepov, A. A., Müller, D., Dubinin, M., Baumann, M. & Radeloff, V. C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 30, 873–884 (2013).
doi: 10.1016/j.landusepol.2012.06.011
Wilson, S. A. & Wilson, C. O. Modelling the impacts of civil war on land use and land cover change within Kono District, Sierra Leone: a socio-geospatial approach. Geocarto Int. 28, 476–501 (2013).
doi: 10.1080/10106049.2012.724456
Sieber, A. et al. Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sens. Environ. 133, 38–51 (2013).
doi: 10.1016/j.rse.2013.01.021
South Sudan—County Population Estimates—2015–2020 (HDX, 2019); https://data.humdata.org/dataset/south-sudan-county-population-estimates-2015-2020
About ACLED (ACLED, 2019); https://www.acleddata.com/about-acled/
Raleigh, C., Linke, A., Hegre, H. & Karlsen, J. Introducing ACLED: an armed conflict location and event dataset. J. Peace Res. 47, 651–660 (2010).
doi: 10.1177/0022343310378914
Donnay, K., Dunford, E. T., McGrath, E. C., Backer, D. & Cunningham, D. E. Integrating conflict event data. J. Conflict Resolut. 63, 1337–1364 (2019).
doi: 10.1177/0022002718777050
Eck, K. In data we trust? A comparison of UCDP GED and ACLED conflict events datasets. Coop. Confl. 47, 124–141 (2012).
doi: 10.1177/0010836711434463
Raleigh, C. & Dowd, C. Armed Conflict Location and Event Data Project (ACLED) Codebook (ACLED, 2015).
Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).
Gellrich, M., Baur, P., Koch, B. & Zimmermann, N. E. Agricultural land abandonment and natural forest re-growth in the Swiss mountains: a spatially explicit economic analysis. Agric. Ecosyst. Environ. 118, 93–108 (2007).
doi: 10.1016/j.agee.2006.05.001
Ho, D. E., Imai, K., King, G. & Stuart, E. A. MatchIt 804, 495–2027 (2011).
Caliendo, M. & Kopeinig, S. Some practical guidance for the implementation of propensity score matching. J. Econ. Surv. 22, 31–72 (2008).
doi: 10.1111/j.1467-6419.2007.00527.x
Special Report: Crop and Food Security Assessment Mission to South Sudan, February 2016 (FAO, 2016).
Special Report: Crop and Food Security Assessment Mission to South Sudan, February 2014 (FAO, 2014).
Special Report: Crop and Food Security Assessment Mission to South Sudan, May 2015 (FAO, 2015).
FAOSTAT. Data. Trade. Crops and Livestock Products (FAO, 2020); http://faostat3.fao.org/browse/T/TP/E
Food and Nutrition Security Assessment in Sudan: Analysis of 2009 National Baseline Household Survey (SIFSIA, 2010).
Buchhorn, M. et al. Copernicus Global Land Service: Land Cover 100m: Version 3 Globe 2015–2019: Product User Manual (Zenodo, 2020); https://zenodo.org/record/3938963

Auteurs

Victor Mackenhauer Olsen (VM)

Department of Geosciences and Natural Resource Management (IGN), University of Copenhagen, København, Denmark. victor.mackenhauer@gmail.com.

Rasmus Fensholt (R)

Department of Geosciences and Natural Resource Management (IGN), University of Copenhagen, København, Denmark.

Pontus Olofsson (P)

Department of Earth and Environment, Boston University, Boston, MA, USA.

Rogerio Bonifacio (R)

Vulnerability Analysis and Mapping (VAM), United Nations World Food Programme (WFP), Rome, Italy.

Van Butsic (V)

Department of Environmental Science, Policy & Management, University of California, Berkeley, CA, USA.

Daniel Druce (D)

DHI GRAS, Hørsholm, Denmark.

Deepak Ray (D)

Institute on the Environment (IonE), University of Minnesota, St. Paul, MN, USA.

Alexander V Prishchepov (AV)

Department of Geosciences and Natural Resource Management (IGN), University of Copenhagen, København, Denmark.

Classifications MeSH