LncRNA FTX Inhibits Ferroptosis of Hippocampal Neurons Displaying Epileptiform Discharges In vitro Through the miR-142-5p/GABPB1 Axis.


Journal

Neuroscience
ISSN: 1873-7544
Titre abrégé: Neuroscience
Pays: United States
ID NLM: 7605074

Informations de publication

Date de publication:
21 08 2023
Historique:
received: 25 10 2022
revised: 24 03 2023
accepted: 03 04 2023
medline: 23 10 2023
pubmed: 1 5 2023
entrez: 30 4 2023
Statut: ppublish

Résumé

Epilepsy is a disabling and drug-refractory neurological disorder. Long non-coding RNAs (lncRNAs) play a vital role in neuronal function and central nervous system development. This study aimed to explore the regulatory mechanism of lncRNA five prime to Xist (FTX) in cell ferroptosis following epilepsy to provide a theoretical foundation for epilepsy management. Hippocampal neurons were isolated from brain tissues of healthy male SD rats, and an in vitro cell model of epilepsy was established using magnesium-free (MGF) induction. Patch-clamp technique was used to determine the action potentials of neurons. Neuronal viability and apoptosis were assessed by CCK-8 assay and flow cytometry. Levels of FTX, miR-142-5p, and GABPB1 were determined by RT-qPCR and Western blot, respectively. The cellular location of FTX was predicted and validated by RNA immunoprecipitation. Dual-luciferase assay verified targeting relationships among FTX, miR-142-5p, and GAPBP1. Levels of ferroptosis indicators and ferroptosis-related proteins were measured using Western blot and corresponding kits. Neuronal ferroptosis and apoptosis increased after MGF induction, and FTX was weakly-expressed in MGF-induced neurons. FTX overexpression attenuated ferroptosis and apoptosis of MGF-induced neurons. miR-142-5p was upregulated after MGF induction and downregulated after FTX overexpression, and FTX targeted miR-142-5p. miR-142-5p overexpression partially negated the inhibitory action of FTX overexpression on ferroptosis of MGF-induced neurons. FTX regulated GABPB1 expression by targeting miR-142-5p. In conclusion, FTX overexpression mitigated ferroptosis of MGF-induced neurons through the miR-142-5p/GABPB1 axis. In conclusion, lncRNA FTX inhibited ferroptosis of MGF-induced rat hippocampal neurons via the miR-142-5p/GABPB1 axis.

Identifiants

pubmed: 37121382
pii: S0306-4522(23)00160-4
doi: 10.1016/j.neuroscience.2023.04.001
pii:
doi:

Substances chimiques

RNA, Long Noncoding 0
MicroRNAs 0
MIRN142 microRNA, rat 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

48-60

Informations de copyright

Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved.

Auteurs

Guoli Zhang (G)

Department of Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, No.998, Aiying street, Songbei district, Harbin city, Heilongjiang Province 150023, PR China. Electronic address: guoliz0622@163.com.

Ying Gao (Y)

Department of Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, No.998, Aiying street, Songbei district, Harbin city, Heilongjiang Province 150023, PR China.

Lixin Jiang (L)

Department of Clinical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.

Yuhang Zhang (Y)

Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH