Mechanical Properties of Fresh, Frozen and Vitrified Articular Cartilage.

Cartilage Cryopreservation Mechanical integrity Osteochondral allograft transplantations Tissue viability

Journal

Annals of biomedical engineering
ISSN: 1573-9686
Titre abrégé: Ann Biomed Eng
Pays: United States
ID NLM: 0361512

Informations de publication

Date de publication:
Sep 2023
Historique:
received: 05 12 2022
accepted: 21 04 2023
medline: 9 8 2023
pubmed: 2 5 2023
entrez: 2 5 2023
Statut: ppublish

Résumé

Osteochondral allograft transplantations are typically used to treat focal articular cartilage injuries where the damaged cartilage is replaced with fresh cadaveric donor grafts. Despite the notable success rate of this procedure, it is limited by fresh donor tissue availability which can only be stored for approximately 28 days after harvest. Vitrification, a form of cryopreservation, can extend the storage time of cartilage. Although it has shown to preserve chondrocyte viability, its effect on the mechanical properties of the tissue has not been thoroughly investigated. Therefore, in this study, the mechanical properties of fresh, frozen, and vitrified articular cartilage were evaluated through unconfined compression testing. Results showed that the peak modulus, equilibrium modulus, and relaxation time constants of the vitrified and control samples (tested one day after harvest) were similar and higher than the fresh (tested 21 days after harvest) and frozen samples. This demonstrated that vitrification does not adversely affect the mechanical properties of cartilage and can be used as an alternative to fresh allografts which are limited by storage time. The fresh samples also had inferior mechanical properties compared to the control samples suggesting that vitrified allografts could potentially improve clinical outcomes in addition to increasing donor tissue availability.

Identifiants

pubmed: 37129781
doi: 10.1007/s10439-023-03220-2
pii: 10.1007/s10439-023-03220-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2001-2012

Informations de copyright

© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.

Références

Andrews, S. H. J., J. B. Rattner, N. G. Shrive, and J. L. Ronsky. Swelling significantly affects the material properties of the menisci in compression. J. Biomech. 48:1485–1489, 2015.
pubmed: 25814178 doi: 10.1016/j.jbiomech.2015.02.001
Ball, S. T., D. Amiel, S. K. Williams, W. Tontz, A. C. Chen, R. L. Sah, and W. D. Bugbee. The Effects of Storage on Fresh Human Osteochondral Allografts. Clin. Orthop. Relat. Res. 418:246–252, 2004.
doi: 10.1097/00003086-200401000-00043
Brockbank, K. G. M., W. R. MacLellan, J. Xie, S. F. Hamm-Alvarez, Z. Z. Chen, and K. Schenke-Layland. Quantitative second harmonic generation imaging of cartilage damage. Cell Tissue Bank. 9:299–307, 2008.
pubmed: 18431689 doi: 10.1007/s10561-008-9070-7
Buckwalter, J. A. Activity vs. rest in the treatment of bone, soft tissue and joint injuries. Iowa Orthop. J. 15:29–42, 1995.
pubmed: 7634042 pmcid: 2329066
Cetinkaya, G., and S. Arat. Cryopreservation of cartilage cell and tissue for biobanking. Cryobiology. 63:292–297, 2011.
pubmed: 22020192 doi: 10.1016/j.cryobiol.2011.09.143
Chokhandre, S., and A. Erdemir. A comprehensive testing protocol for macro-scale mechanical characterization of knee articular cartilage with documented experimental repeatability. J. Mech. Behav. Biomed. Mater. 112:104025, 2020.
pubmed: 32841833 pmcid: 7655550 doi: 10.1016/j.jmbbm.2020.104025
Ebrahimi, M., S. Ojanen, A. Mohammadi, M. A. Finnilä, A. Joukainen, H. Kröger, S. Saarakkala, R. K. Korhonen, and P. Tanska. Elastic, viscoelastic and fibril-reinforced poroelastic material properties of healthy and osteoarthritic human tibial cartilage. Ann. Biomed. Eng. 47:953–966, 2019.
pubmed: 30690688 pmcid: 8494710 doi: 10.1007/s10439-019-02213-4
Fahy, G. M., D. R. MacFarlane, C. A. Angell, and H. T. Meryman. Vitrification as an approach to cryopreservation. Cryobiology. 21:407–426, 1984.
pubmed: 6467964 doi: 10.1016/0011-2240(84)90079-8
Fernández, P., M. J. Lamela Rey, and A. Fernández Canteli. Viscoelastic characterisation of the temporomandibular joint disc in bovines. Strain. 47:188–193, 2011.
doi: 10.1111/j.1475-1305.2008.00502.x
Fortin, M., J. Soulhat, A. Shirazi-Adl, E. B. Hunziker, and M. D. Buschmann. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. J. Biomech. Eng. 122:189–195, 2000.
pubmed: 10834160 doi: 10.1115/1.429641
Grillo, A., A. Guaily, C. Giverso, and S. Federico. Non-linear model for compression tests on articular cartilage. J. Biomech. Eng. 2015. https://doi.org/10.1115/1.4030310 .
doi: 10.1115/1.4030310 pubmed: 25840005
Gross, A. E., W. Kim, F. Las Heras, D. Backstein, O. Safir, and K. P. H. Pritzker. Fresh osteochondral allografts for posttraumatic knee defects: Long-term followup. Clin. Orthop. Relat. Res. 466:1863–1870, 2008.
pubmed: 18465182 pmcid: 2584250 doi: 10.1007/s11999-008-0282-8
He, J., I. Wine, K. Wu, J. Sevick, L. Laouar, N. M. Jomha, and L. Westover. Effect of vitrification on mechanical properties of porcine articular cartilage. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 236:095441192211220, 2022.
doi: 10.1177/09544119221122066
Hennig, A., and J. Abate. Osteochondral allografts in the treatment of articular cartilage injuries of the knee. Sports Med. Arthrosc. 15:126–132, 2007.
pubmed: 17700372 doi: 10.1097/JSA.0b013e31812e5373
Jomha, N. M., P. C. Anoop, and L. E. McGann. Intramatrix events during cryopreservation of porcine articular cartilage using rapid cooling. J. Orthop. Res. 22:152–157, 2004.
pubmed: 14656674 doi: 10.1016/S0736-0266(03)00158-X
Julkunen, P., W. Wilson, J. S. Jurvelin, J. Rieppo, C. J. Qu, M. J. Lammi, and R. K. Korhonen. Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. J. Biomech. 41:1978–1986, 2008.
pubmed: 18490021 doi: 10.1016/j.jbiomech.2008.03.026
June, R. K., K. L. Mejia, J. R. Barone, and D. P. Fyhrie. Cartilage stress-relaxation is affected by both the charge concentration and valence of solution cations. Osteoarthr. Cartil. 17:669–676, 2009.
doi: 10.1016/j.joca.2008.09.011
Jurvelin, J. S., M. D. Buschmann, and E. B. Hunziker. Mechanical anisotropy of the human knee articular cartilage in compression. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 217:215–219, 2003.
doi: 10.1243/095441103765212712
Kane, P., R. Frederick, B. Tucker, C. C. Dodson, J. A. Anderson, M. G. Ciccotti, and K. B. Freedman. Surgical restoration/repair of articular cartilage injuries in athletes. Phys. Sportsmed. 41:75–86, 2013.
pubmed: 23703520 doi: 10.3810/psm.2013.05.2017
Khalsa, P. S., and S. R. Eisenberg. Compressive behavior of articular cartilage is not completely explained by proteoglycan osmotic pressure. J. Biomech. 30:589–594, 1997.
pubmed: 9165392 doi: 10.1016/S0021-9290(97)84508-3
Korhonen, R. K., M. S. Laasanen, J. Töyräs, J. Rieppo, J. Hirvonen, H. J. Helminen, and J. S. Jurvelin. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35:903–909, 2002.
pubmed: 12052392 doi: 10.1016/S0021-9290(02)00052-0
Lai, J. H., and M. E. Levenston. Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression. Osteoarthr. Cartil. 18:1291–1299, 2010.
doi: 10.1016/j.joca.2010.05.020
Lee, C. R., A. J. Grodzinsky, H. P. Hsu, S. D. Martin, and M. Spector. Effects of harvest and selected cartilage repair procedures on the physical and biochemical properties of articular cartilage in the canine knee. J. Orthop. Res. 18:790–799, 2000.
pubmed: 11117302 doi: 10.1002/jor.1100180517
Li, H., J. Li, S. Yu, C. Wu, and W. Zhang. The mechanical properties of tibiofemoral and patellofemoral articular cartilage in compression depend on anatomical regions. Sci. Rep. 11(1):6128, 2021.
pubmed: 33731799 pmcid: 7969630 doi: 10.1038/s41598-021-85716-2
Mazur, P. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology. 14:251–272, 1977.
pubmed: 330113 doi: 10.1016/0011-2240(77)90175-4
Mithoefer, K. Complex articular cartilage restoration. Sports Med. Arthrosc. 21:31–37, 2013.
pubmed: 23314266 doi: 10.1097/JSA.0b013e318266f0c3
Mow, V. C., M. H. Holmes, and W. Michael Lai. Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17:377–394, 1984.
pubmed: 6376512 doi: 10.1016/0021-9290(84)90031-9
Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102:73–84, 1980.
pubmed: 7382457 doi: 10.1115/1.3138202
Murray, I. R., M. T. Benke, and B. R. Mandelbaum. Management of knee articular cartilage injuries in athletes: chondroprotection, chondrofacilitation, and resurfacing. Knee Surg. Sport. Traumatol. Arthrosc. 24:1617–1626, 2016.
doi: 10.1007/s00167-015-3509-8
Patel, J. M., B. C. Wise, E. D. Bonnevie, and R. L. Mauck. A systematic review and guide to mechanical testing for articular cartilage tissue engineering. Tissue Eng. Part C Methods. 25:593–608, 2019.
pubmed: 31288616 pmcid: 6791482 doi: 10.1089/ten.tec.2019.0116
Pearle, A. D., R. F. Warren, and S. A. Rodeo. Basic science of articular cartilage and osteoarthritis. Clin. Sports Med. 24:1–12, 2005.
pubmed: 15636773 doi: 10.1016/j.csm.2004.08.007
Scott, C. C., and K. A. Athanasiou. Mechanical impact and articular cartilage. Crit. Rev. Biomed. Eng. 34:347–378, 2006.
pubmed: 17206919 doi: 10.1615/CritRevBiomedEng.v34.i5.10
Smyth, P. A., I. Green, R. L. Jackson, and R. Reid Hanson. Biomimetic model of articular cartilage based on in vitro experiments. J. Biomimetics Biomater. Biomed. Eng. 21:75–91, 2014.
doi: 10.4028/www.scientific.net/JBBBE.21.75
Song, Y. C., Y. H. An, Q. K. Kang, C. Li, J. M. Boggs, Z. Chen, M. J. Taylor, and K. G. M. Brockbank. Vitreous preservation of articular cartilage grafts. J. Investig. Surg. 17:65–70, 2004.
doi: 10.1080/08941930490422438
Stadnyk, M., J. L. Sevick, K. Wu, J. A. W. Elliott, and N. M. Jomha. The effect of cryoprotectant vehicle solution on cartilage cell viability following vitrification. Cell Tissue Bank. 23(1):31–41, 2021.
pubmed: 33629239 doi: 10.1007/s10561-021-09906-y
Tetteh, E. S., S. Bajaj, N. S. Ghodadra, and B. J. Cole. Basic science and surgical treatment options for articular cartilage injuries of the knee. J. Orthop. Sports Phys. Ther. 42:243–253, 2012.
pubmed: 22383075 doi: 10.2519/jospt.2012.3673
Thambyah, A., A. Nather, and J. Goh. Mechanical properties of articular cartilage covered by the meniscus. Osteoarthr. Cartil. 14:580–588, 2006.
doi: 10.1016/j.joca.2006.01.015
Treppo, S., H. Koepp, E. C. Quan, A. A. Cole, K. E. Kuettner, and A. J. Grodzinsky. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J. Orthop. Res. 18:739–748, 2000.
pubmed: 11117295 doi: 10.1002/jor.1100180510
Warner, R. M., R. Shuttleworth, J. D. Benson, A. Eroglu, and A. Z. Higgins. General tissue mass transfer model for cryopreservation applications. Biophys. J. 120:4980–4991, 2021.
pubmed: 34662558 pmcid: 8633834 doi: 10.1016/j.bpj.2021.10.014
Willett, T. L., R. Whiteside, P. M. Wild, U. P. Wyss, and T. Anastassiades. Artefacts in the mechanical characterization of porcine articular cartilage due to freezing. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 219:23–29, 2005.
doi: 10.1243/095441105X9200
Williams, R. J., J. C. Dreese, and C. T. Chen. Chondrocyte survival and material properties of hypothermically stored cartilage: an evaluation of tissue used for osteochondral allograft transplantation. Am. J. Sports Med. 32:132–139, 2004.
pubmed: 14754736 doi: 10.1177/0095399703258733
Williams, S. K., D. Amiel, S. T. Ball, R. T. Allen, V. W. Wong, A. C. Chen, R. L. Sah, and W. D. Bugbee. Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J. Bone Jt. Surg. 85:2111–2120, 2003.
doi: 10.2106/00004623-200311000-00008
Wu, K., L. Laouar, R. Dong, J. A. W. Elliott, and N. M. Jomha. Evaluation of five additives to mitigate toxicity of cryoprotective agents on porcine chondrocytes. Cryobiology. 88:98–105, 2019.
pubmed: 30826335 doi: 10.1016/j.cryobiol.2019.02.004
Wu, K., L. Laouar, J. A. W. Elliott, and N. M. Jomha. Vitrification of intact porcine femoral condyle allografts using an optimized approach. Cartilage. 13:1688S-1699S, 2021.
pubmed: 33100019 doi: 10.1177/1947603520967077
Wu, K., N. Shardt, L. Laouar, Z. Chen, V. Prasad, J. A. W. Elliott, and N. M. Jomha. Comparison of three multi-cryoprotectant loading protocols for vitrification of porcine articular cartilage. Cryobiology. 92:151–160, 2020.
pubmed: 31917159 doi: 10.1016/j.cryobiol.2020.01.001
Wu, K., N. Shardt, L. Laouar, J. A. W. Elliott, and N. M. Jomha. Vitrification of particulated articular cartilage via calculated protocols. npj Regen. Med. 6(1):15, 2021.
pubmed: 33741977 pmcid: 7979917 doi: 10.1038/s41536-021-00123-5
Yong, K. W., L. Laouar, J. A. W. Elliott, and N. M. Jomha. Review of non-permeating cryoprotectants as supplements for vitrification of mammalian tissues. Cryobiology. 96:1–11, 2020.
pubmed: 32910946 doi: 10.1016/j.cryobiol.2020.08.012
Yu, H., K. K. Al-Abbasi, J. A. W. Elliott, L. E. McGann, and N. M. Jomha. Clinical efflux of cryoprotective agents from vitrified human articular cartilage. Cryobiology. 66:121–125, 2013.
pubmed: 23291303 doi: 10.1016/j.cryobiol.2012.12.005
Zheng, S. K., Y. Xia, A. Bidthanapally, F. Badar, I. Ilsar, and N. Duvoisin. Damages to the extracellular matrix in articular cartilage due to cryopreservation by microscopic magnetic resonance imaging and biochemistry. Magn. Reson. Imaging. 27:648–655, 2009.
pubmed: 19106023 doi: 10.1016/j.mri.2008.10.003
Zouzias, I. C., and W. D. Bugbee. Osteochondral allograft transplantation in the knee. Sports Med. Arthrosc. 24:79–84, 2016.
pubmed: 27135291 doi: 10.1097/JSA.0000000000000109

Auteurs

Maha Ead (M)

Department of Mechanical Engineering, University of Alberta, Edmonton, Canada. mead@ualberta.ca.

Kezhou Wu (K)

Department of Surgery, University of Alberta, Edmonton, Canada.
Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China.

Chester Jar (C)

Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.

Kajsa Duke (K)

Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.

Nadr Jomha (N)

Department of Surgery, University of Alberta, Edmonton, Canada.

Lindsey Westover (L)

Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH