Mechanical Properties of Fresh, Frozen and Vitrified Articular Cartilage.
Cartilage
Cryopreservation
Mechanical integrity
Osteochondral allograft transplantations
Tissue viability
Journal
Annals of biomedical engineering
ISSN: 1573-9686
Titre abrégé: Ann Biomed Eng
Pays: United States
ID NLM: 0361512
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
received:
05
12
2022
accepted:
21
04
2023
medline:
9
8
2023
pubmed:
2
5
2023
entrez:
2
5
2023
Statut:
ppublish
Résumé
Osteochondral allograft transplantations are typically used to treat focal articular cartilage injuries where the damaged cartilage is replaced with fresh cadaveric donor grafts. Despite the notable success rate of this procedure, it is limited by fresh donor tissue availability which can only be stored for approximately 28 days after harvest. Vitrification, a form of cryopreservation, can extend the storage time of cartilage. Although it has shown to preserve chondrocyte viability, its effect on the mechanical properties of the tissue has not been thoroughly investigated. Therefore, in this study, the mechanical properties of fresh, frozen, and vitrified articular cartilage were evaluated through unconfined compression testing. Results showed that the peak modulus, equilibrium modulus, and relaxation time constants of the vitrified and control samples (tested one day after harvest) were similar and higher than the fresh (tested 21 days after harvest) and frozen samples. This demonstrated that vitrification does not adversely affect the mechanical properties of cartilage and can be used as an alternative to fresh allografts which are limited by storage time. The fresh samples also had inferior mechanical properties compared to the control samples suggesting that vitrified allografts could potentially improve clinical outcomes in addition to increasing donor tissue availability.
Identifiants
pubmed: 37129781
doi: 10.1007/s10439-023-03220-2
pii: 10.1007/s10439-023-03220-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2001-2012Informations de copyright
© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.
Références
Andrews, S. H. J., J. B. Rattner, N. G. Shrive, and J. L. Ronsky. Swelling significantly affects the material properties of the menisci in compression. J. Biomech. 48:1485–1489, 2015.
pubmed: 25814178
doi: 10.1016/j.jbiomech.2015.02.001
Ball, S. T., D. Amiel, S. K. Williams, W. Tontz, A. C. Chen, R. L. Sah, and W. D. Bugbee. The Effects of Storage on Fresh Human Osteochondral Allografts. Clin. Orthop. Relat. Res. 418:246–252, 2004.
doi: 10.1097/00003086-200401000-00043
Brockbank, K. G. M., W. R. MacLellan, J. Xie, S. F. Hamm-Alvarez, Z. Z. Chen, and K. Schenke-Layland. Quantitative second harmonic generation imaging of cartilage damage. Cell Tissue Bank. 9:299–307, 2008.
pubmed: 18431689
doi: 10.1007/s10561-008-9070-7
Buckwalter, J. A. Activity vs. rest in the treatment of bone, soft tissue and joint injuries. Iowa Orthop. J. 15:29–42, 1995.
pubmed: 7634042
pmcid: 2329066
Cetinkaya, G., and S. Arat. Cryopreservation of cartilage cell and tissue for biobanking. Cryobiology. 63:292–297, 2011.
pubmed: 22020192
doi: 10.1016/j.cryobiol.2011.09.143
Chokhandre, S., and A. Erdemir. A comprehensive testing protocol for macro-scale mechanical characterization of knee articular cartilage with documented experimental repeatability. J. Mech. Behav. Biomed. Mater. 112:104025, 2020.
pubmed: 32841833
pmcid: 7655550
doi: 10.1016/j.jmbbm.2020.104025
Ebrahimi, M., S. Ojanen, A. Mohammadi, M. A. Finnilä, A. Joukainen, H. Kröger, S. Saarakkala, R. K. Korhonen, and P. Tanska. Elastic, viscoelastic and fibril-reinforced poroelastic material properties of healthy and osteoarthritic human tibial cartilage. Ann. Biomed. Eng. 47:953–966, 2019.
pubmed: 30690688
pmcid: 8494710
doi: 10.1007/s10439-019-02213-4
Fahy, G. M., D. R. MacFarlane, C. A. Angell, and H. T. Meryman. Vitrification as an approach to cryopreservation. Cryobiology. 21:407–426, 1984.
pubmed: 6467964
doi: 10.1016/0011-2240(84)90079-8
Fernández, P., M. J. Lamela Rey, and A. Fernández Canteli. Viscoelastic characterisation of the temporomandibular joint disc in bovines. Strain. 47:188–193, 2011.
doi: 10.1111/j.1475-1305.2008.00502.x
Fortin, M., J. Soulhat, A. Shirazi-Adl, E. B. Hunziker, and M. D. Buschmann. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. J. Biomech. Eng. 122:189–195, 2000.
pubmed: 10834160
doi: 10.1115/1.429641
Grillo, A., A. Guaily, C. Giverso, and S. Federico. Non-linear model for compression tests on articular cartilage. J. Biomech. Eng. 2015. https://doi.org/10.1115/1.4030310 .
doi: 10.1115/1.4030310
pubmed: 25840005
Gross, A. E., W. Kim, F. Las Heras, D. Backstein, O. Safir, and K. P. H. Pritzker. Fresh osteochondral allografts for posttraumatic knee defects: Long-term followup. Clin. Orthop. Relat. Res. 466:1863–1870, 2008.
pubmed: 18465182
pmcid: 2584250
doi: 10.1007/s11999-008-0282-8
He, J., I. Wine, K. Wu, J. Sevick, L. Laouar, N. M. Jomha, and L. Westover. Effect of vitrification on mechanical properties of porcine articular cartilage. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 236:095441192211220, 2022.
doi: 10.1177/09544119221122066
Hennig, A., and J. Abate. Osteochondral allografts in the treatment of articular cartilage injuries of the knee. Sports Med. Arthrosc. 15:126–132, 2007.
pubmed: 17700372
doi: 10.1097/JSA.0b013e31812e5373
Jomha, N. M., P. C. Anoop, and L. E. McGann. Intramatrix events during cryopreservation of porcine articular cartilage using rapid cooling. J. Orthop. Res. 22:152–157, 2004.
pubmed: 14656674
doi: 10.1016/S0736-0266(03)00158-X
Julkunen, P., W. Wilson, J. S. Jurvelin, J. Rieppo, C. J. Qu, M. J. Lammi, and R. K. Korhonen. Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. J. Biomech. 41:1978–1986, 2008.
pubmed: 18490021
doi: 10.1016/j.jbiomech.2008.03.026
June, R. K., K. L. Mejia, J. R. Barone, and D. P. Fyhrie. Cartilage stress-relaxation is affected by both the charge concentration and valence of solution cations. Osteoarthr. Cartil. 17:669–676, 2009.
doi: 10.1016/j.joca.2008.09.011
Jurvelin, J. S., M. D. Buschmann, and E. B. Hunziker. Mechanical anisotropy of the human knee articular cartilage in compression. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 217:215–219, 2003.
doi: 10.1243/095441103765212712
Kane, P., R. Frederick, B. Tucker, C. C. Dodson, J. A. Anderson, M. G. Ciccotti, and K. B. Freedman. Surgical restoration/repair of articular cartilage injuries in athletes. Phys. Sportsmed. 41:75–86, 2013.
pubmed: 23703520
doi: 10.3810/psm.2013.05.2017
Khalsa, P. S., and S. R. Eisenberg. Compressive behavior of articular cartilage is not completely explained by proteoglycan osmotic pressure. J. Biomech. 30:589–594, 1997.
pubmed: 9165392
doi: 10.1016/S0021-9290(97)84508-3
Korhonen, R. K., M. S. Laasanen, J. Töyräs, J. Rieppo, J. Hirvonen, H. J. Helminen, and J. S. Jurvelin. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35:903–909, 2002.
pubmed: 12052392
doi: 10.1016/S0021-9290(02)00052-0
Lai, J. H., and M. E. Levenston. Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression. Osteoarthr. Cartil. 18:1291–1299, 2010.
doi: 10.1016/j.joca.2010.05.020
Lee, C. R., A. J. Grodzinsky, H. P. Hsu, S. D. Martin, and M. Spector. Effects of harvest and selected cartilage repair procedures on the physical and biochemical properties of articular cartilage in the canine knee. J. Orthop. Res. 18:790–799, 2000.
pubmed: 11117302
doi: 10.1002/jor.1100180517
Li, H., J. Li, S. Yu, C. Wu, and W. Zhang. The mechanical properties of tibiofemoral and patellofemoral articular cartilage in compression depend on anatomical regions. Sci. Rep. 11(1):6128, 2021.
pubmed: 33731799
pmcid: 7969630
doi: 10.1038/s41598-021-85716-2
Mazur, P. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology. 14:251–272, 1977.
pubmed: 330113
doi: 10.1016/0011-2240(77)90175-4
Mithoefer, K. Complex articular cartilage restoration. Sports Med. Arthrosc. 21:31–37, 2013.
pubmed: 23314266
doi: 10.1097/JSA.0b013e318266f0c3
Mow, V. C., M. H. Holmes, and W. Michael Lai. Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17:377–394, 1984.
pubmed: 6376512
doi: 10.1016/0021-9290(84)90031-9
Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102:73–84, 1980.
pubmed: 7382457
doi: 10.1115/1.3138202
Murray, I. R., M. T. Benke, and B. R. Mandelbaum. Management of knee articular cartilage injuries in athletes: chondroprotection, chondrofacilitation, and resurfacing. Knee Surg. Sport. Traumatol. Arthrosc. 24:1617–1626, 2016.
doi: 10.1007/s00167-015-3509-8
Patel, J. M., B. C. Wise, E. D. Bonnevie, and R. L. Mauck. A systematic review and guide to mechanical testing for articular cartilage tissue engineering. Tissue Eng. Part C Methods. 25:593–608, 2019.
pubmed: 31288616
pmcid: 6791482
doi: 10.1089/ten.tec.2019.0116
Pearle, A. D., R. F. Warren, and S. A. Rodeo. Basic science of articular cartilage and osteoarthritis. Clin. Sports Med. 24:1–12, 2005.
pubmed: 15636773
doi: 10.1016/j.csm.2004.08.007
Scott, C. C., and K. A. Athanasiou. Mechanical impact and articular cartilage. Crit. Rev. Biomed. Eng. 34:347–378, 2006.
pubmed: 17206919
doi: 10.1615/CritRevBiomedEng.v34.i5.10
Smyth, P. A., I. Green, R. L. Jackson, and R. Reid Hanson. Biomimetic model of articular cartilage based on in vitro experiments. J. Biomimetics Biomater. Biomed. Eng. 21:75–91, 2014.
doi: 10.4028/www.scientific.net/JBBBE.21.75
Song, Y. C., Y. H. An, Q. K. Kang, C. Li, J. M. Boggs, Z. Chen, M. J. Taylor, and K. G. M. Brockbank. Vitreous preservation of articular cartilage grafts. J. Investig. Surg. 17:65–70, 2004.
doi: 10.1080/08941930490422438
Stadnyk, M., J. L. Sevick, K. Wu, J. A. W. Elliott, and N. M. Jomha. The effect of cryoprotectant vehicle solution on cartilage cell viability following vitrification. Cell Tissue Bank. 23(1):31–41, 2021.
pubmed: 33629239
doi: 10.1007/s10561-021-09906-y
Tetteh, E. S., S. Bajaj, N. S. Ghodadra, and B. J. Cole. Basic science and surgical treatment options for articular cartilage injuries of the knee. J. Orthop. Sports Phys. Ther. 42:243–253, 2012.
pubmed: 22383075
doi: 10.2519/jospt.2012.3673
Thambyah, A., A. Nather, and J. Goh. Mechanical properties of articular cartilage covered by the meniscus. Osteoarthr. Cartil. 14:580–588, 2006.
doi: 10.1016/j.joca.2006.01.015
Treppo, S., H. Koepp, E. C. Quan, A. A. Cole, K. E. Kuettner, and A. J. Grodzinsky. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J. Orthop. Res. 18:739–748, 2000.
pubmed: 11117295
doi: 10.1002/jor.1100180510
Warner, R. M., R. Shuttleworth, J. D. Benson, A. Eroglu, and A. Z. Higgins. General tissue mass transfer model for cryopreservation applications. Biophys. J. 120:4980–4991, 2021.
pubmed: 34662558
pmcid: 8633834
doi: 10.1016/j.bpj.2021.10.014
Willett, T. L., R. Whiteside, P. M. Wild, U. P. Wyss, and T. Anastassiades. Artefacts in the mechanical characterization of porcine articular cartilage due to freezing. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 219:23–29, 2005.
doi: 10.1243/095441105X9200
Williams, R. J., J. C. Dreese, and C. T. Chen. Chondrocyte survival and material properties of hypothermically stored cartilage: an evaluation of tissue used for osteochondral allograft transplantation. Am. J. Sports Med. 32:132–139, 2004.
pubmed: 14754736
doi: 10.1177/0095399703258733
Williams, S. K., D. Amiel, S. T. Ball, R. T. Allen, V. W. Wong, A. C. Chen, R. L. Sah, and W. D. Bugbee. Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J. Bone Jt. Surg. 85:2111–2120, 2003.
doi: 10.2106/00004623-200311000-00008
Wu, K., L. Laouar, R. Dong, J. A. W. Elliott, and N. M. Jomha. Evaluation of five additives to mitigate toxicity of cryoprotective agents on porcine chondrocytes. Cryobiology. 88:98–105, 2019.
pubmed: 30826335
doi: 10.1016/j.cryobiol.2019.02.004
Wu, K., L. Laouar, J. A. W. Elliott, and N. M. Jomha. Vitrification of intact porcine femoral condyle allografts using an optimized approach. Cartilage. 13:1688S-1699S, 2021.
pubmed: 33100019
doi: 10.1177/1947603520967077
Wu, K., N. Shardt, L. Laouar, Z. Chen, V. Prasad, J. A. W. Elliott, and N. M. Jomha. Comparison of three multi-cryoprotectant loading protocols for vitrification of porcine articular cartilage. Cryobiology. 92:151–160, 2020.
pubmed: 31917159
doi: 10.1016/j.cryobiol.2020.01.001
Wu, K., N. Shardt, L. Laouar, J. A. W. Elliott, and N. M. Jomha. Vitrification of particulated articular cartilage via calculated protocols. npj Regen. Med. 6(1):15, 2021.
pubmed: 33741977
pmcid: 7979917
doi: 10.1038/s41536-021-00123-5
Yong, K. W., L. Laouar, J. A. W. Elliott, and N. M. Jomha. Review of non-permeating cryoprotectants as supplements for vitrification of mammalian tissues. Cryobiology. 96:1–11, 2020.
pubmed: 32910946
doi: 10.1016/j.cryobiol.2020.08.012
Yu, H., K. K. Al-Abbasi, J. A. W. Elliott, L. E. McGann, and N. M. Jomha. Clinical efflux of cryoprotective agents from vitrified human articular cartilage. Cryobiology. 66:121–125, 2013.
pubmed: 23291303
doi: 10.1016/j.cryobiol.2012.12.005
Zheng, S. K., Y. Xia, A. Bidthanapally, F. Badar, I. Ilsar, and N. Duvoisin. Damages to the extracellular matrix in articular cartilage due to cryopreservation by microscopic magnetic resonance imaging and biochemistry. Magn. Reson. Imaging. 27:648–655, 2009.
pubmed: 19106023
doi: 10.1016/j.mri.2008.10.003
Zouzias, I. C., and W. D. Bugbee. Osteochondral allograft transplantation in the knee. Sports Med. Arthrosc. 24:79–84, 2016.
pubmed: 27135291
doi: 10.1097/JSA.0000000000000109