Chemical and cytotoxicity profiles of 11 pink pepper (Schinus spp.) samples via non-targeted hyphenated high-performance thin-layer chromatography.
Bioassay
Bioprofiling
HPTLC
Schinus molle
Schinus terebinthifolia
Triterpene
Journal
Metabolomics : Official journal of the Metabolomic Society
ISSN: 1573-3890
Titre abrégé: Metabolomics
Pays: United States
ID NLM: 101274889
Informations de publication
Date de publication:
02 05 2023
02 05 2023
Historique:
received:
06
12
2022
accepted:
05
04
2023
medline:
4
5
2023
pubmed:
3
5
2023
entrez:
2
5
2023
Statut:
epublish
Résumé
Pink pepper is a worldwide used spice that corresponds to the berries of two species, Schinus terebinthifolia Raddi or S. molle L. (Anacardiaceae). Toxic and allergic reactions by ingestion or contact with these plants were reported, and classical in vitro studies have highlighted the cytotoxic properties of apolar extracts from the fruits. Perform a non-targeted screening of 11 pink pepper samples for the detection and identification of individual cytotoxic substances. After reversed-phase high-performance thin-layer chromatography (RP-HPTLC) separation of the extracts and multi-imaging (UV/Vis/FLD), cytotoxic compounds were detected by bioluminescence reduction from luciferase reporter cells (HEK 293 T-CMV-ELuc) applied directly on the adsorbent surface, followed by elution of detected cytotoxic substance into atmospheric-pressure chemical ionization high-resolution mass spectrometry (APCI-HRMS). Separations for mid-polar and non-polar fruit extracts demonstrated the selectivity of the method to different substance classes. One cytotoxic substance zone was tentatively assigned as moronic acid, a pentacyclic triterpenoid acid. The developed non-targeted hyphenated RP-HPTLC-UV/Vis/FLD-bioluminescent cytotoxicity bioassay-FIA-APCI-HRMS method was successfully demonstrated for cytotoxicity screening (bioprofiling) and respective cytotoxin assignment.
Identifiants
pubmed: 37130976
doi: 10.1007/s11306-023-02008-8
pii: 10.1007/s11306-023-02008-8
pmc: PMC10154279
doi:
Substances chimiques
Plant Extracts
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
48Informations de copyright
© 2023. The Author(s).
Références
Aboalhaija, N. H., Awwad, O., Khalil, E., Abbassi, R., Abaza, I. F., & Afifi, F. U. (2019). Chemodiversity and antiproliferative activity of the essential oil of schinus molle growing in Jordan. Chemistry & Biodiversity, 16, e1900388. https://doi.org/10.1002/cbdv.201900388
doi: 10.1002/cbdv.201900388
Aswathy, M., Vijayan, A., Daimary, U. D., Girisa, S., Radhakrishnan, K. V., & Kunnumakkara, A. B. (2022). Betulinic acid: A natural promising anticancer drug, current situation, and future perspectives. Journal of Biochemical and Molecular Toxicology, 36, e23206. https://doi.org/10.1002/jbt.23206
doi: 10.1002/jbt.23206
pubmed: 36124371
Bendaoud, H., Romdhane, M., Souchard, J. P., Cazaux, S., & Bouajila, J. (2010). Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. Journal of Food Science, 75, C466–C472. https://doi.org/10.1111/j.1750-3841.2010.01711.x
doi: 10.1111/j.1750-3841.2010.01711.x
pubmed: 20722898
Berghea, E. C., Craiu, M., Ali, S., Corcea, S. L., & Bumbacea, R. S. (2021). Contact allergy induced by mango (Mangifera indica): A relevant topic? Medicina (kaunas, Lithuania). https://doi.org/10.3390/medicina57111240
doi: 10.3390/medicina57111240
pubmed: 34833457
Beutler, J. A. (2019). Natural products as a foundation for drug discovery. Current Protocols in Pharmacology, 86, e67. https://doi.org/10.1002/cpph.67
doi: 10.1002/cpph.67
pubmed: 31539923
pmcid: 7442317
Booker, A., Zhai, L., Gkouva, C., Li, S., & Heinrich, M. (2016). From traditional resource to global commodities:—A comparison of Rhodiola species using NMR spectroscopy-metabolomics and HPTLC. Frontiers in Pharmacology, 7, 254. https://doi.org/10.3389/fphar.2016.00254
doi: 10.3389/fphar.2016.00254
pubmed: 27621703
pmcid: 5002433
Bozorgi, M., Memariani, Z., Mobli, M., Salehi Surmaghi, M. H., Shams-Ardekani, M. R., & Rahimi, R. (2013). Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): A review of their traditional uses, phytochemistry, and pharmacology. The Scientific World Journal, 2013, 219815. https://doi.org/10.1155/2013/219815
doi: 10.1155/2013/219815
pubmed: 24453812
pmcid: 3876903
Brieudes, V., Mikropoulou, E. V., Kallergis, E., Kaliora, A. C., Papada, E., Gkiouvetidis, P., et al. (2021). Development, validation and application of a UHPLC-MS method for the quantification of chios mastic gum triterpenoids in human plasma. Planta Medica, 87, 1101–1109. https://doi.org/10.1055/a-1408-9338
doi: 10.1055/a-1408-9338
pubmed: 33784768
Burros, M. (1982). F.D.A. and French disagree on pink peppercorn’s effects. The New York Times. https://www.nytimes.com/1982/03/31/garden/fda-and-french-disagree-on-pink-peppercorn-s-effects.html . Accessed 10 Oct 2022.
Cerón-Romero, L., Paoli, P., Camici, G., Flores-Morales, V., Rios, M. Y., Ramírez-Espinosa, J. J., et al. (2016). In vitro and in silico PTP-1B inhibition and in vivo antidiabetic activity of semisynthetic moronic acid derivatives. Bioorganic & Medicinal Chemistry Letters, 26, 2018–2022. https://doi.org/10.1016/j.bmcl.2016.02.082
doi: 10.1016/j.bmcl.2016.02.082
Chan, E. W. C., Soon, C. Y., Tan, J. B. L., Wong, S. K., & Hui, Y. W. (2019). Ursolic acid: An overview on its cytotoxic activities against breast and colorectal cancer cells. Journal of Integrative Medicine, 17, 155–160. https://doi.org/10.1016/j.joim.2019.03.003
doi: 10.1016/j.joim.2019.03.003
pubmed: 30928277
Chang, F.-R., Hsieh, Y.-C., Chang, Y.-F., Lee, K.-H., Wu, Y.-C., & Chang, L.-K. (2010). Inhibition of the Epstein-Barr virus lytic cycle by moronic acid. Antiviral Research, 85, 490–495. https://doi.org/10.1016/j.antiviral.2009.12.002
doi: 10.1016/j.antiviral.2009.12.002
pubmed: 19969023
Chudzik, M., Korzonek-Szlacheta, I., & Król, W. (2015). Triterpenes as potentially cytotoxic compounds. Molecules (basel, Switzerland), 20, 1610–1625. https://doi.org/10.3390/molecules20011610
doi: 10.3390/molecules20011610
pubmed: 25608043
Coricovac, D., Dehelean, C. A., Pinzaru, I., Mioc, A., Aburel, O.-M., Macasoi, I., et al. (2021). Assessment of betulinic acid cytotoxicity and mitochondrial metabolism impairment in a human melanoma cell line. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22094870
doi: 10.3390/ijms22094870
pubmed: 34064489
pmcid: 8125295
DATAPLAMT - Banco de Dados e Amostras de Plantas Aromaticas, Medicinais e Toxicas. Schinus terebinthifolia, Schinus molle: Historical records and traditional uses. http://www.dataplamt.org.br/ . Accessed 10 Apr 2023.
Davison, E. K., & Brimble, M. A. (2019). Natural product derived privileged scaffolds in drug discovery. Current Opinion in Chemical Biology, 52, 1–8. https://doi.org/10.1016/j.cbpa.2018.12.007
doi: 10.1016/j.cbpa.2018.12.007
pubmed: 30682725
de Oliveira, M. S., Gontijo, S. M., Teixeira, M. S., Teixeira, K. I. R., Takahashi, J. A., Millan, R. D. S., et al. (2018). Chemical composition and antifungal and anticancer activities of extracts and essential oils of Schinus terebinthifolius Raddi fruit. Revista Fitos. https://doi.org/10.5935/2446-4775.20180013
doi: 10.5935/2446-4775.20180013
de Oliveira, V. S., Augusta, I. M., Braz, MVd. C., Riger, C. J., Prudêncio, E. R., Sawaya, A. C. H. F., et al. (2020b). Aroeira fruit (Schinus terebinthifolius Raddi) as a natural antioxidant: Chemical constituents, bioactive compounds and in vitro and in vivo antioxidant capacity. Food Chemistry, 315, 126274. https://doi.org/10.1016/j.foodchem.2020.126274
doi: 10.1016/j.foodchem.2020.126274
pubmed: 32007814
Díaz, C., Quesada, S., Brenes, O., Aguilar, G., & Cicció, J. F. (2008). Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines. Natural Product Research, 22, 1521–1534. https://doi.org/10.1080/14786410701848154
doi: 10.1080/14786410701848154
pubmed: 19023816
Dos Santos da Rocha, P., de Araújo Boleti, A. P., do Carmo Vieira, M., Carollo, C. A., da Silva, D. B., Estevinho, L. M., et al. (2019). Microbiological quality, chemical profile as well as antioxidant and antidiabetic activities of Schinus terebinthifolius Raddi. Comparative biochemistry and physiology. Toxicology & Pharmacology: CBP, 220, 36–46. https://doi.org/10.1016/j.cbpc.2019.02.007
doi: 10.1016/j.cbpc.2019.02.007
D’Sousa’ Costa, C. O., Ribeiro, P. R., Loureiro, M. B., Simões, R. C., de Castro, R. D., & Fernandez, L. G. (2015). Phytochemical screening, antioxidant and antibacterial activities of extracts prepared from different tissues of Schinus terebinthifolius Raddi that occurs in the coast of Bahia, Brazil. Pharmacognosy Magazine, 11, 607–614. https://doi.org/10.4103/0973-1296.160459
doi: 10.4103/0973-1296.160459
pubmed: 26246739
pmcid: 4522850
El-Baba, C., Baassiri, A., Kiriako, G., Dia, B., Fadlallah, S., Moodad, S., et al. (2021). Terpenoids’ anti-cancer effects: Focus on autophagy. Apoptosis: An International Journal on Programmed Cell Death, 26, 491–511. https://doi.org/10.1007/s10495-021-01684-y
doi: 10.1007/s10495-021-01684-y
pubmed: 34269920
Estrada-Soto, S., Cerón-Romero, L., Navarrete-Vázquez, G., Rosales-Ortega, E., Gómez-Zamudio, J., Cruz, M., et al. (2022). PPARα/γ, adiponectin, and GLUT4 overexpression induced by moronic acid methyl ester influenced glucose and triglyceride levels of experimental diabetic mice. Canadian Journal of Physiology and Pharmacology, 100, 295–305. https://doi.org/10.1139/cjpp-2021-0526
doi: 10.1139/cjpp-2021-0526
pubmed: 34757855
Feriani, A., Tir, M., Arafah, M., Gómez-Caravaca, A. M., Contreras, M. D. M., Nahdi, S., et al. (2021). Schinus terebinthifolius fruits intake ameliorates metabolic disorders, inflammation, oxidative stress, and related vascular dysfunction, in atherogenic diet-induced obese rats. Insight of their chemical characterization using HPLC-ESI-QTOF-MS/MS. Journal of Ethnopharmacology, 269, 113701. https://doi.org/10.1016/j.jep.2020.113701
doi: 10.1016/j.jep.2020.113701
pubmed: 33346028
Feriani, A., Tir, M., Hamed, M., Sila, A., Nahdi, S., Alwasel, S., et al. (2020). Multidirectional insights on polysaccharides from Schinus terebinthifolius and Schinus molle fruits: Physicochemical and functional profiles, in vitro antioxidant, anti-genotoxicity, antidiabetic, and antihemolytic capacities, and in vivo anti-inflammatory and anti-nociceptive properties. International Journal of Biological Macromolecules, 165, 2576–2587. https://doi.org/10.1016/j.ijbiomac.2020.10.123
doi: 10.1016/j.ijbiomac.2020.10.123
pubmed: 33096174
Fogde, D. L., Xavier, C. P. R., Balnytė, K., Holland, L. K. K., Stahl-Meyer, K., Dinant, C., et al. (2022). Ursolic acid impairs cellular lipid homeostasis and lysosomal membrane integrity in breast carcinoma cells. Cells. https://doi.org/10.3390/cells11244079
doi: 10.3390/cells11244079
pubmed: 36552844
pmcid: 9776894
Fong, A. T., Du Toit, G., Versteeg, S. A., & van Ree, R. (2019). Pink peppercorn: A cross-reactive risk for cashew- and pistachio-allergic patients. The Journal of Allergy and Clinical Immunology. in Practice, 7, 724-725.e1. https://doi.org/10.1016/j.jaip.2018.11.051
doi: 10.1016/j.jaip.2018.11.051
pubmed: 30594585
Formagio, A., Iriguchi, E., Roveda, L., Vieira, M. C., Cardoso, C., Zarate, N., et al. (2011). Chemical composition and anti-inflammatory activity of the essential oil of Schinus terebinthifolius Raddi (Anacardiaceae) fruits. Latin American Journal of Pharmacy, 30, 1555–1559.
Garzoli, S., Masci, V. L., Ovidi, E., Turchetti, G., Zago, D., & Tiezzi, A. (2019). Chemical investigation of a biologically active Schinus molle L. leaf extract. Journal of Analytical Methods in Chemistry, 2019, 8391263. https://doi.org/10.1155/2019/8391263
doi: 10.1155/2019/8391263
pubmed: 31467769
pmcid: 6701278
Ge, Y., Chen, X., Gođevac, D., Bueno, P. C. P., Salomé Abarca, L. F., Jang, Y. P., et al. (2019). Metabolic profiling of saponin-rich ophiopogon japonicus roots based on 1H NMR and HPTLC platforms. Planta Medica, 85, 917–924. https://doi.org/10.1055/a-0947-5797
doi: 10.1055/a-0947-5797
pubmed: 31207650
Ge, Y., Sun, M., Salomé-Abarca, L. F., Wang, M., & Choi, Y. H. (2018). Investigation of species and environmental effects on rhubarb roots metabolome using 1H NMR combined with high performance thin layer chromatography. Metabolomics: Official Journal of the Metabolomic Society, 14, 137. https://doi.org/10.1007/s11306-018-1421-1
doi: 10.1007/s11306-018-1421-1
pubmed: 30830440
Giordani, C., Waller, S. B., Madrid, I. M., Guterres, K. A., de Matos, C. B., Hoffmann, J. F., et al. (2022). Chemical, antioxidant and cytotoxic profile of hydroalcoholic extracts of plants from Southern Brazil and their activity against pathogenic fungi isolated from dogs and cats with sensitivity and resistance to conventional antifungals. Natural Product Research, 36, 3223–3228. https://doi.org/10.1080/14786419.2021.1956920
doi: 10.1080/14786419.2021.1956920
pubmed: 34498965
Giuffrida, D., Martínez, N., Arrieta-Garay, Y., Fariña, L., Boido, E., & Dellacassa, E. (2020). Valorisation of Schinus molle fruit as a source of volatile compounds in foods as flavours and fragrances. Food Research International (ottawa, Ont.), 133, 109103. https://doi.org/10.1016/j.foodres.2020.109103
doi: 10.1016/j.foodres.2020.109103
pubmed: 32466921
Guzzo da Silva, B., Foglio, M. A., Vieira e Rosa, Pd. T., Taranto, O. P., & Frattini Fileti, A. M. (2019). Optimization of hydrodistillation and in vitro anticancer activity of essential oil from Schinus terebinthifolius Raddi fruits. Chemical Engineering Communications, 206, 619–629. https://doi.org/10.1080/00986445.2018.1515074
doi: 10.1080/00986445.2018.1515074
Hackman, G. L., Collins, M., Lu, X., Lodi, A., DiGiovanni, J., & Tiziani, S. (2020). Predicting and quantifying antagonistic effects of natural compounds given with chemotherapeutic agents: Applications for high-throughput screening. Cancers. https://doi.org/10.3390/cancers12123714
doi: 10.3390/cancers12123714
pubmed: 33322034
pmcid: 7763027
Hodoň, J., Frydrych, I., Trhlíková, Z., Pokorný, J., Borková, L., Benická, S., et al. (2022). Triterpenoid pyrazines and pyridines—Synthesis, cytotoxicity, mechanism of action, preparation of prodrugs. European Journal of Medicinal Chemistry, 243, 114777. https://doi.org/10.1016/j.ejmech.2022.114777
doi: 10.1016/j.ejmech.2022.114777
pubmed: 36174412
Huo, J.-L., Fu, W.-J., Liu, Z.-H., Lu, N., Jia, X.-Q., & Liu, Z.-S. (2022). Research advance of natural products in tumor immunotherapy. Frontiers in Immunology, 13, 972345. https://doi.org/10.3389/fimmu.2022.972345
doi: 10.3389/fimmu.2022.972345
pubmed: 36159787
pmcid: 9494295
Ivanović, S., Gođevac, D., Ristivojević, P., Zdunić, G., Stojanović, D., & Šavikin, K. (2023). HPTLC-based metabolomics approach for the detection of chokeberry (Aronia melanocarpa (Michx.) Elliott) adulteration. Journal of Herbal Medicine, 37, 100618. https://doi.org/10.1016/j.hermed.2022.100618
doi: 10.1016/j.hermed.2022.100618
Iwanaga, C. C., Ferreira, L. D. A. O., Bernuci, K. Z., Fernandez, C. M. M., Lorenzetti, F. B., Sehaber, C. C., et al. (2019). In vitro antioxidant potential and in vivo effects of Schinus terebinthifolia Raddi leaf extract in diabetic rats and determination of chemical composition by HPLC-ESI-MS/MS. Natural Product Research, 33, 1655–1658. https://doi.org/10.1080/14786419.2018.1425848
doi: 10.1080/14786419.2018.1425848
pubmed: 29347842
Kaistha, K. K., & Kier, L. B. (1962). Structural studies on the triterpenes of Schinus terebinthefolius. Journal of Pharmaceutical Sciences, 51, 1136–1139. https://doi.org/10.1002/jps.2600511205
doi: 10.1002/jps.2600511205
pubmed: 13961862
Kim, H. K., Choi, Y. H., & Verpoorte, R. (2023). Natural products drug discovery: On silica or in-silico? Handbook of Experimental Pharmacology, 277, 117–141. https://doi.org/10.1007/164_2022_611
doi: 10.1007/164_2022_611
pubmed: 36318326
Kim, M. J., Kim, D. W., Kim, J. G., Shin, Y., Jung, S. K., & Kim, Y.-J. (2021). Analysis of the chemical, antioxidant, and anti-inflammatory properties of pink pepper (Schinus molle L.). Antioxidants (basel, Switzerland). https://doi.org/10.3390/antiox10071062
doi: 10.3390/antiox10071062
pubmed: 35052608
pmcid: 8700732
Kim, Y., Flamm, A., ElSohly, M. A., Kaplan, D. H., Hage, R. J., Hamann, C. P., et al. (2019). Poison ivy, oak, and sumac dermatitis: What is known and what is new? Dermatitis: Contact, Atopic, Occupational, Drug, 30, 183–190. https://doi.org/10.1097/DER.0000000000000472
doi: 10.1097/DER.0000000000000472
pubmed: 31045932
Klingelhöfer, I., Pham Ngoc, L., van der Burg, B., & Morlock, G. E. (2021). A bioimaging system combining human cultured reporter cells and planar chromatography to identify novel bioactive molecules. Analytica Chimica Acta, 1183, 338956. https://doi.org/10.1016/j.aca.2021.338956
doi: 10.1016/j.aca.2021.338956
pubmed: 34627516
Linden, M., Brinckmann, C., Feuereisen, M., Review, M., & Schieber, A. (2020). Effects of structural differences on the antibacterial activity of biflavonoids from fruits of the Brazilian peppertree (Schinus terebinthifolius Raddi). Food Research International (ottawa, Ont.), 133, 109134. https://doi.org/10.1016/j.foodres.2020.109134
doi: 10.1016/j.foodres.2020.109134
pubmed: 32466911
Locali-Pereira, A. R., Lopes, N. A., & Nicoletti, V. R. (2022). Pink pepper (Schinus terebinthifolius Raddi) from extracts to application: Truths about a fake pepper. Food Reviews International. https://doi.org/10.1080/87559129.2022.2062767
doi: 10.1080/87559129.2022.2062767
Mahmoud, T. S., Marques, M. R., Pessoa, Cd. Ó., Lotufo, L. V. C., Magalhães, H. I. F., de Moraes, M. O., et al. (2011). In vitro cytotoxic activity of Brazilian Middle West plant extracts. Revista Brasileira De Farmacognosia, 21, 456–464. https://doi.org/10.1590/S0102-695X2011005000061
doi: 10.1590/S0102-695X2011005000061
Makunga, N., Kai, G., & Sieniawska, E. (2022). Editorial: Metabolomics as a tool in ethnobotany-driven drug discoveries. Frontiers in Pharmacology, 13, 1066875. https://doi.org/10.3389/fphar.2022.1066875
doi: 10.3389/fphar.2022.1066875
pubmed: 36386182
pmcid: 9650449
Marangoni, J. A., da Costa Pinto, J. V., Kassuya, C. A. L., de Oliveira Junior, P. C., Dos Santos, S. M., Cardoso, C. A. L., et al. (2022). Geographical variation in the chemical composition, anti-inflammatory activity of the essential oil, micromorphology and histochemistry of Schinus terebinthifolia Raddi. Journal of Ethnopharmacology. https://doi.org/10.1016/j.jep.2022.115786
doi: 10.1016/j.jep.2022.115786
pubmed: 36206869
Martelanc, M., Vovk, I., & Simonovska, B. (2009). Separation and identification of some common isomeric plant triterpenoids by thin-layer chromatography and high-performance liquid chromatography. Journal of Chromatography. A, 1216, 6662–6670. https://doi.org/10.1016/j.chroma.2009.07.038
doi: 10.1016/j.chroma.2009.07.038
pubmed: 19695573
Matsuo, A. L., Figueiredo, C. R., Arruda, D. C., Pereira, F. V., Scutti, J. A. B., Massaoka, M. H., et al. (2011). α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochemical and Biophysical Research Communications, 411, 449–454. https://doi.org/10.1016/j.bbrc.2011.06.176
doi: 10.1016/j.bbrc.2011.06.176
pubmed: 21756878
Mazumder, A., Cerella, C., & Diederich, M. (2018). Natural scaffolds in anticancer therapy and precision medicine. Biotechnology Advances, 36, 1563–1585. https://doi.org/10.1016/j.biotechadv.2018.04.009
doi: 10.1016/j.biotechadv.2018.04.009
pubmed: 29729870
Mehl, A., Schwack, W., & Morlock, G. E. (2021). On-surface autosampling for liquid chromatography-mass spectrometry. Journal of Chromatography. A, 1651, 462334. https://doi.org/10.1016/j.chroma.2021.462334
doi: 10.1016/j.chroma.2021.462334
pubmed: 34153734
Mioc, M., Mioc, A., Prodea, A., Milan, A., Balan-Porcarasu, M., Racoviceanu, R., et al. (2022). Novel triterpenic acid-benzotriazole esters act as pro-apoptotic antimelanoma agents. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23179992
doi: 10.3390/ijms23179992
pubmed: 36077389
pmcid: 9456456
Mügge, F. L., & Morlock, G. E. (2022). Planar bioluminescent cytotoxicity assay via genetically modified adherent human reporter cell lines, applied to authenticity screening of Saussurea costus root. Journal of Chromatography A. https://doi.org/10.1016/j.chroma.2022.463522
doi: 10.1016/j.chroma.2022.463522
pubmed: 36198213
Mügge, F. L. B., Prates, S. M. S., Andrade, A. P. S., Melo, J. C., Silva, A. M., de Araujo, R. L. B., et al. (2021). Proliferative effect of food plant species from Brazil’s cerrado on cultured fibroblasts. Journal of Medicinal Food, 24, 1323–1330. https://doi.org/10.1089/jmf.2021.0018
doi: 10.1089/jmf.2021.0018
pubmed: 34491843
Mulaudzi, N., Anokwuru, C. P., Tankeu, S. Y., Combrinck, S., Chen, W., Vermaak, I., et al. (2021). Phytochemical profiling and quality control of Terminalia sericea Burch. ex DC. Using HPTLC metabolomics. Molecules (basel, Switzerland). https://doi.org/10.3390/molecules26020432
doi: 10.3390/molecules26020432
pubmed: 33467662
Najmi, A., Javed, S. A., Al Bratty, M., & Alhazmi, H. A. (2022). Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules (basel, Switzerland). https://doi.org/10.3390/molecules27020349
doi: 10.3390/molecules27020349
pubmed: 36144587
pmcid: 9145706
Naumoska, K., & Vovk, I. (2015). Analysis of triterpenoids and phytosterols in vegetables by thin-layer chromatography coupled to tandem mass spectrometry. Journal of Chromatography. A, 1381, 229–238. https://doi.org/10.1016/j.chroma.2015.01.001
doi: 10.1016/j.chroma.2015.01.001
pubmed: 25597891
Navarrete, A., Avula, B., Joshi, V. C., Ji, X., Hersh, P., & Khan, I. A. (2006). Quantitative determination of triterpenes from Amphiptherygium adstringens by liquid chromatography and thin-layer chromatography and morphological analysis of cuachalalate preparations. Journal of AOAC International, 89(1), 1–7.
doi: 10.1093/jaoac/89.1.1
pubmed: 16512221
Nocchi, S. R., de Moura-Costa, G. F., Novello, C. R., Rodrigues, J., Longhini, R., de Mello, J. C. P., et al. (2016). In vitro cytotoxicity and anti-herpes simplex virus type 1 activity of hydroethanolic extract, fractions, and isolated compounds from stem bark of Schinus terebinthifolius Raddi. Pharmacognosy Magazine, 12, 160–164. https://doi.org/10.4103/0973-1296.177903
doi: 10.4103/0973-1296.177903
pubmed: 27076754
pmcid: 4809172
Oliveira, M. B. S., Valentim, I. B., Rocha, T. S., Santos, J. C., Pires, K. S. N., Tanabe, E. L. L., et al. (2020a). Schinus terebenthifolius Raddi extracts: From sunscreen activity toward protection of the placenta to Zika virus infection, new uses for a well-known medicinal plant. Industrial Crops and Products, 152, 112503. https://doi.org/10.1016/j.indcrop.2020.112503
doi: 10.1016/j.indcrop.2020.112503
pubmed: 32346222
pmcid: 7186214
Oprean, C., Ivan, A., Bojin, F., Cristea, M., Soica, C., Drăghia, L., et al. (2018). Selective in vitro anti-melanoma activity of ursolic and oleanolic acids. Toxicology Mechanisms and Methods, 28, 148–156. https://doi.org/10.1080/15376516.2017.1373881
doi: 10.1080/15376516.2017.1373881
pubmed: 28868958
Oramas-Royo, S. M., Chávez, H., Martín-Rodíguez, P., Fernández-Pérez, L., Ravelo, A. G., & Estévez-Braun, A. (2010). Cytotoxic triterpenoids from Maytenus retusa. Journal of Natural Products, 73, 2029–2034. https://doi.org/10.1021/np100517u
doi: 10.1021/np100517u
pubmed: 21090801
Ovidi, E., Garzoli, S., Laghezza Masci, V., Turchetti, G., & Tiezzi, A. (2021). GC-MS investigation and antiproliferative activities of extracts from male and female flowers of Schinus molle L. Natural Product Research, 35, 1923–1927. https://doi.org/10.1080/14786419.2019.1644628
doi: 10.1080/14786419.2019.1644628
pubmed: 31328565
Oyenihi, O. R., Oyenihi, A. B., Erhabor, J. O., Matsabisa, M. G., & Oguntibeju, O. O. (2021). Unravelling the anticancer mechanisms of traditional herbal medicines with metabolomics. Molecules (basel, Switzerland). https://doi.org/10.3390/molecules26216541
doi: 10.3390/molecules26216541
pubmed: 34770949
Özdemir, Z., & Wimmer, Z. (2022). Selected plant triterpenoids and their amide derivatives in cancer treatment: A review. Phytochemistry, 203, 113340. https://doi.org/10.1016/j.phytochem.2022.113340
doi: 10.1016/j.phytochem.2022.113340
pubmed: 35987401
Ramírez-Espinosa, J. J., García-Jiménez, S., Rios, M. Y., Medina-Franco, J. L., López-Vallejo, F., Webster, S. P., et al. (2013). Antihyperglycemic and sub-chronic antidiabetic actions of morolic and moronic acids, in vitro and in silico inhibition of 11β-HSD 1. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 20, 571–576. https://doi.org/10.1016/j.phymed.2013.01.013
doi: 10.1016/j.phymed.2013.01.013
pubmed: 23453304
Ren, Y., & Kinghorn, A. D. (2019). Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity. Planta Medica, 85, 802–814. https://doi.org/10.1055/a-0832-2383
doi: 10.1055/a-0832-2383
pubmed: 30658371
pmcid: 6639164
Rhourri-Frih, B., Chaimbault, P., Claude, B., Lamy, C., André, P., & Lafosse, M. (2009). Analysis of pentacyclic triterpenes by LC-MS. A comparative study between APCI and APPI. Journal of Mass Spectrometry : JMS, 44, 71–80. https://doi.org/10.1002/jms.1472
doi: 10.1002/jms.1472
pubmed: 18946879
Rios, M. Y., Salina, D., & Villarreal, M. L. (2001). Cytotoxic activity of moronic acid and identification of the new triterpene 3,4-seco-olean-18-ene-3,28-dioic acid from Phoradendron reichenbachianum. Planta Medica, 67, 443–446. https://doi.org/10.1055/s-2001-15823
doi: 10.1055/s-2001-15823
pubmed: 11488459
Rosas, E. C., Correa, L. B., Pádua, T. A., Costa, T. E. M. M., Mazzei, J. L., Heringer, A. P., et al. (2015). Anti-inflammatory effect of Schinus terebinthifolius Raddi hydroalcoholic extract on neutrophil migration in zymosan-induced arthritis. Journal of Ethnopharmacology, 175, 490–498. https://doi.org/10.1016/j.jep.2015.10.014
doi: 10.1016/j.jep.2015.10.014
pubmed: 26453933
Ruan, S., & Zha, L. (2022). Moronic acid improves intestinal inflammation in mice with chronic colitis by inhibiting intestinal macrophage polarization. Journal of Biochemical and Molecular Toxicology, 36, e23188. https://doi.org/10.1002/jbt.23188
doi: 10.1002/jbt.23188
pubmed: 35924425
Salem, M. Z. M., El-Hefny, M., Ali, H. M., Elansary, H. O., Nasser, R. A., El-Settawy, A. A. A., et al. (2018). Antibacterial activity of extracted bioactive molecules of Schinus terebinthifolius ripened fruits against some pathogenic bacteria. Microbial Pathogenesis, 120, 119–127. https://doi.org/10.1016/j.micpath.2018.04.040
doi: 10.1016/j.micpath.2018.04.040
pubmed: 29704984
Salomé-Abarca, L. F., van den Hondel, C. A. M. J. J., Erol, Ö., Klinkhamer, P. G. L., Kim, H. K., & Choi, Y. H. (2021). HPTLC-based chemical profiling: An approach to monitor plant metabolic expansion caused by fungal endophytes. Metabolites. https://doi.org/10.3390/metabo11030174
doi: 10.3390/metabo11030174
pubmed: 33802951
pmcid: 8002819
Santana, J. S., Sartorelli, P., Guadagnin, R. C., Matsuo, A. L., Figueiredo, C. R., Soares, M. G., et al. (2012). Essential oils from Schinus terebinthifolius leaves—Chemical composition and in vitro cytotoxicity evaluation. Pharmaceutical Biology, 50, 1248–1253. https://doi.org/10.3109/13880209.2012.666880
doi: 10.3109/13880209.2012.666880
pubmed: 22870865
Schreiner, T., & Morlock, G. E. (2021). Non-target bioanalytical eight-dimensional hyphenation including bioassay, heart-cut trapping, online desalting, orthogonal separations and mass spectrometry. Journal of Chromatography. A, 1647, 462154. https://doi.org/10.1016/j.chroma.2021.462154
doi: 10.1016/j.chroma.2021.462154
pubmed: 33957351
Schreiner, T., Sauter, D., Friz, M., Heil, J., & Morlock, G. E. (2021). Is our natural food our homeostasis? Array of a thousand effect-directed profiles of 68 herbs and spices. Frontiers in Pharmacology, 12, 755941. https://doi.org/10.3389/fphar.2021.755941
doi: 10.3389/fphar.2021.755941
pubmed: 34955829
pmcid: 8696259
Sharma, B., & Yadav, D. K. (2022). Metabolomics and network pharmacology in the exploration of the multi-targeted therapeutic approach of traditional medicinal plants. Plants (basel, Switzerland). https://doi.org/10.3390/plants11233243
doi: 10.3390/plants11233243
pubmed: 36616304
pmcid: 9601345
Silva-Luz, C. L., Pirani, J. R., Pell, S. K., & Mitchell, J. D. (2022). Anacardiaceae R.Br. in Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB44 . Accessed 10 Oct 2022.
Stahl, E., Keller, K., & Blinn, C. (1983). Cardanol, a skin irritant in pink pepper. Planta Medica, 48, 5–9. https://doi.org/10.1055/s-2007-969868
doi: 10.1055/s-2007-969868
pubmed: 6611745
Sut, S., Poloniato, G., Malagoli, M., & Dall’Acqua, S. (2018). Fragmentation of the main triterpene acids of apple by LC-APCI-MSn. Journal of Mass Spectrometry : JMS, 53, 882–892. https://doi.org/10.1002/jms.4264
doi: 10.1002/jms.4264
pubmed: 29992756
Symes, W. F., & Dawson, C. R. (1953). Separation and structural determination of the olefinic components of poison ivy urushiol, cardanol and cardol. Nature, 171, 841–842. https://doi.org/10.1038/171841b0
doi: 10.1038/171841b0
pubmed: 13054743
Vahur, S., Teearu, A., Haljasorg, T., Burk, P., Leito, I., & Kaljurand, I. (2012). Analysis of dammar resin with MALDI-FT-ICR-MS and APCI-FT-ICR-MS. Journal of Mass Spectrometry : JMS, 47, 392–409. https://doi.org/10.1002/jms.2971
doi: 10.1002/jms.2971
pubmed: 22431467
van der Doelen, G. A., van den Berg, K. J., Boon, J. J., Shibayama, N., de Raie, L. R. E., & Genuit, W. J. L. (1998). Analysis of fresh triterpenoid resins and aged triterpenoid varnishes by high-performance liquid chromatography–atmospheric pressure chemical ionisation (tandem) mass spectrometry. Journal of Chromatography A, 809, 21–37. https://doi.org/10.1016/S0021-9673(98)00186-1
doi: 10.1016/S0021-9673(98)00186-1
Vieira, M. N., Costa, Fd. N., Leitão, G. G., Garrard, I., Hewitson, P., Ignatova, S., et al. (2015). Schinus terebinthifolius scale-up countercurrent chromatography (Part I): High performance countercurrent chromatography fractionation of triterpene acids with off-line detection using atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography. A, 1389, 39–48. https://doi.org/10.1016/j.chroma.2015.02.005
doi: 10.1016/j.chroma.2015.02.005
pubmed: 25757818
Wang, G., Yu, Y., Li, Z.-M., Zhu, Z.-M., Wang, Z.-J., & Tao, M.-F. (2022a). Triterpenoids of Rhus chinensis supressed colorectal cancer progress by enhancing antitumor immunity and CD8 + T cells tumor infiltration. Nutrition and Cancer, 74, 2550–2564. https://doi.org/10.1080/01635581.2021.2009523
doi: 10.1080/01635581.2021.2009523
pubmed: 34866510
Wang, Z., Zhang, P., Jiang, H., Sun, B., Luo, H., & Jia, A. (2022b). Ursolic acid enhances the sensitivity of MCF-7 and MDA-MB-231 cells to epirubicin by modulating the autophagy pathway. Molecules (basel, Switzerland). https://doi.org/10.3390/molecules27113399
doi: 10.3390/molecules27113399
pubmed: 36615527
pmcid: 9896073
Weeks, A., Zapata, F., Pell, S. K., Daly, D. C., Mitchell, J. D., & Fine, P. V. A. (2014). To move or to evolve: Contrasting patterns of intercontinental connectivity and climatic niche evolution in “Terebinthaceae” (Anacardiaceae and Burseraceae). Frontiers in Genetics, 5, 409. https://doi.org/10.3389/fgene.2014.00409
doi: 10.3389/fgene.2014.00409
pubmed: 25506354
pmcid: 4247111
Yu, D., Sakurai, Y., Chen, C.-H., Chang, F.-R., Huang, L., Kashiwada, Y., et al. (2006). Anti-AIDS agents 69. Moronic acid and other triterpene derivatives as novel potent anti-HIV agents. Journal of Medicinal Chemistry, 49, 5462–5469. https://doi.org/10.1021/jm0601912
doi: 10.1021/jm0601912
pubmed: 16942019
pmcid: 2512972
Yueqin, Z., Recio, M. C., Máñez, S., Giner, R. M., Cerdá-Nicolás, M., & Ríos, J.-L. (2003). Isolation of two triterpenoids and a biflavanone with anti-Inflammatory activity from Schinus molle fruits. Planta Medica, 69, 893–898. https://doi.org/10.1055/s-2003-45096
doi: 10.1055/s-2003-45096
pubmed: 14648390