Residential houses - a major point source of microplastic pollution: insights on the various sources, their transport, transformation, and toxicity behaviour.
Domestic household
Indoor air
Microplastic
Residential buildings
Soil environment
Toxicity
Wastewater
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
received:
15
12
2022
accepted:
05
04
2023
medline:
29
5
2023
pubmed:
3
5
2023
entrez:
2
5
2023
Statut:
ppublish
Résumé
Municipal wastewater has been considered as one of the largest contributors and carriers of microplastics to the aquatic environment. However, the various residential activities that generate municipal wastewater are equally significant whenever the source of microplastics in aquatic system is accounted. However, so far, only municipal wastewater has received wide attention in previous review articles. Hence, this review article is written to address this gap by highlighting, firstly, the chances of microplastics arising from the usage of personal care products (PCPs), laundry washing, face masks, and other potential sources. Thereafter, the various factors influencing the generation and intensity of indoor microplastic pollution and the evidence available on the possibility of microplastic inhalation by humans and pet animals are explained. Followed by that, the removal efficiency of microplastics observed in wastewater treatment plants, the fate of microplastics present in the effluent and biosolids, and their impact on aquatic and soil environment are explored. Furthermore, the impact of aging on the characteristics of microsized plastics has been explored. Finally, the influence of age and size of microplastics on the toxicity effects and the factors impacting the retention and accumulation of microplastics in aquatic species are reviewed. Furthermore, the prominent pathway of microplastics into the human body and the studies available on the toxicity effects observed in human cells upon exposure to microplastics of different characteristics are explored.
Identifiants
pubmed: 37131007
doi: 10.1007/s11356-023-26918-1
pii: 10.1007/s11356-023-26918-1
pmc: PMC10154189
doi:
Substances chimiques
Microplastics
0
Plastics
0
Wastewater
0
Water Pollutants, Chemical
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
67919-67940Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
5Gyres (2022) Plastic microbeads. In: 5Gyres. https://www.5gyres.org/microbeads . Accessed 23 Mar 2022
Anagnosti L, Varvaresou A, Pavlou P et al (2021) Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively? Mar Pollut Bull 162:111883. https://doi.org/10.1016/j.marpolbul.2020.111883
doi: 10.1016/j.marpolbul.2020.111883
Aslam I, Qadir A, Ahmad SR (2022) A preliminary assessment of microplastics in indoor dust of a developing country in South Asia. Environ Monit Assess 194:340. https://doi.org/10.1007/s10661-022-09928-3
doi: 10.1007/s10661-022-09928-3
Bahrina I, Syafei AD, Satoto R et al (2020) An occupant-based overview of microplastics in indoor environments in the City of Surabaya, Indonesia. J Ecol Eng 21:236–242. https://doi.org/10.12911/22998993/126876
doi: 10.12911/22998993/126876
Bashir SM, Kimiko S, Mak CW et al (2021) Personal care and cosmetic products as a potential source of environmental contamination by microplastics in a densely populated Asian city. Front Mar Sci 8:1–11. https://doi.org/10.3389/fmars.2021.683482
doi: 10.3389/fmars.2021.683482
Belzagui F, Buscio V, Gutiérrez-Bouzán C, Vilaseca M (2021) Cigarette butts as a microfiber source with a microplastic level of concern. Sci Total Environ 762:144165. https://doi.org/10.1016/j.scitotenv.2020.144165
doi: 10.1016/j.scitotenv.2020.144165
Bengalli R, Zerboni A, Bonfanti P et al (2022) Characterization of microparticles derived from waste plastics and their bio-interaction with human lung A549 cells. J Appl Toxicol 42:2030–2044. https://doi.org/10.1002/jat.4372
doi: 10.1002/jat.4372
Boucher J, Friot D (2017) Primary microplastics in the oceans: a global evaluation of sources. IUCN, Gland Switz. https://doi.org/10.2305/iucn.ch.2017.01.en
doi: 10.2305/iucn.ch.2017.01.en
Bråte ILN, Blázquez M, Brooks SJ, Thomas KV (2018) Weathering impacts the uptake of polyethylene microparticles from toothpaste in Mediterranean mussels (M. galloprovincialis). Sci Total Environ 626:1310–1318. https://doi.org/10.1016/j.scitotenv.2018.01.141
doi: 10.1016/j.scitotenv.2018.01.141
Browne MA, Crump P, Niven SJ et al (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45:9175–9179. https://doi.org/10.1021/es201811s
doi: 10.1021/es201811s
Can B (2007) Manufacturing of environment-friendly floor carpets. Pak Text J 56:73
Chak AK (2020) Microplastics, microbeads: what you did not know about self-care products. DownToEarth
Chang M (2015) Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions. Mar Pollut Bull 101:330–333. https://doi.org/10.1016/j.marpolbul.2015.10.074
doi: 10.1016/j.marpolbul.2015.10.074
Cheung PK, Fok L (2016) Evidence of microbeads from personal care product contaminating the sea. Mar Pollut Bull 109:582–585. https://doi.org/10.1016/j.marpolbul.2016.05.046
doi: 10.1016/j.marpolbul.2016.05.046
Cheung PK, Fok L (2017) Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China. Water Res 122:53–61. https://doi.org/10.1016/j.watres.2017.05.053
doi: 10.1016/j.watres.2017.05.053
Choi D, Bang J, Kim T et al (2020a) In vitro chemical and physical toxicities of polystyrene microfragments in human-derived cells. J Hazard Mater 400:123308. https://doi.org/10.1016/j.jhazmat.2020.123308
doi: 10.1016/j.jhazmat.2020.123308
Choi JS, Hong SH, Park JW (2020b) Evaluation of microplastic toxicity in accordance with different sizes and exposure times in the marine copepod Tigriopus japonicus. Mar Environ Res 153:104838. https://doi.org/10.1016/j.marenvres.2019.104838
doi: 10.1016/j.marenvres.2019.104838
Choi H, Lee I, Kim H et al (2022) Comparison of microplastic characteristics in the indoor and outdoor air of urban areas of South Korea. Water, Air, Soil Pollut 233:1–10. https://doi.org/10.1007/s11270-022-05650-5
doi: 10.1007/s11270-022-05650-5
Cotton L, Hayward AS, Lant NJ, Blackburn RS (2020) Improved garment longevity and reduced microfibre release are important sustainability benefits of laundering in colder and quicker washing machine cycles. Dye Pigment 177:108120. https://doi.org/10.1016/j.dyepig.2019.108120
doi: 10.1016/j.dyepig.2019.108120
Cox KD, Covernton GA, Davies HL et al (2019) Human consumption of microplastics. Environ Sci Technol 53:7068–7074. https://doi.org/10.1021/acs.est.9b01517
doi: 10.1021/acs.est.9b01517
Curren E, Leaw CP, Lim PT, Leong SCY (2020) Evidence of marine microplastics in commercially harvested seafood. Front Bioeng Biotechnol 8:1–9. https://doi.org/10.3389/fbioe.2020.562760
doi: 10.3389/fbioe.2020.562760
De Falco F, Gullo MP, Gentile G et al (2018) Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ Pollut 236:916–925. https://doi.org/10.1016/j.envpol.2017.10.057
doi: 10.1016/j.envpol.2017.10.057
de Sá LC, Oliveira M, Ribeiro F et al (2018) Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Sci Total Environ 645:1029–1039. https://doi.org/10.1016/j.scitotenv.2018.07.207
doi: 10.1016/j.scitotenv.2018.07.207
Delhiraja K, Philip L (2020) Characterization of segregated greywater from Indian households: part A—physico-chemical and microbial parameters. Environ Monit Assess 192:428. https://doi.org/10.1007/s10661-020-08369-0
doi: 10.1007/s10661-020-08369-0
Deng Y, Zhang Y, Lemos B, Ren H (2017) Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep 7:1–10. https://doi.org/10.1038/srep46687
doi: 10.1038/srep46687
Dris R, Gasperi J, Mirande C et al (2017) A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut 221:453–458. https://doi.org/10.1016/j.envpol.2016.12.013
doi: 10.1016/j.envpol.2016.12.013
Droguet BE, Liang HL, Frka-Petesic B et al (2022) Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments. Nat Mat 21:352–358. https://doi.org/10.1038/s41563-021-01135-8
doi: 10.1038/s41563-021-01135-8
Du F, Cai H, Zhang Q et al (2020) Microplastics in take-out food containers. J Hazard Mat 399:122969. https://doi.org/10.1016/j.jhazmat.2020.122969
doi: 10.1016/j.jhazmat.2020.122969
Du S, Valla JA, Parnas RS, Bollas GM (2016) Conversion of polyethylene terephthalate based waste carpet to benzene-rich oils through thermal, catalytic, and catalytic steam pyrolysis. ACS Sustain Chem Eng 4:2852–2860. https://doi.org/10.1021/acssuschemeng.6b00450
doi: 10.1021/acssuschemeng.6b00450
Edo C, González-Pleiter M, Leganés F et al (2020) Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ Pollut 259:113837. https://doi.org/10.1016/j.envpol.2019.113837
doi: 10.1016/j.envpol.2019.113837
Elizalde-Velázquez A, Carcano AM, Crago J, et al (2020) Translocation, trophic transfer, accumulation and depuration of polystyrene microplastics in Daphnia magna and Pimephales promelas. Environ Pollut 259:. https://doi.org/10.1016/j.envpol.2020.113937
European Environmental Bureau (EEB) (2021) EU microplastic ban just got a step closer, but has major loopholes. Recycl. Mag
Fadare OO, Okoffo ED (2020) Covid-19 face masks: a potential source of microplastic fibers in the environment. Sci Total Environ 737:140279. https://doi.org/10.1016/j.scitotenv.2020.140279
doi: 10.1016/j.scitotenv.2020.140279
Fadare OO, Wan B, Guo LH, Zhao L (2020) Microplastics from consumer plastic food containers: are we consuming it? Chemosphere 253:126787. https://doi.org/10.1016/j.chemosphere.2020.126787
doi: 10.1016/j.chemosphere.2020.126787
Fang M, Liao Z, Ji X et al (2022) Microplastic ingestion from atmospheric deposition during dining/drinking activities. J Hazard Mat 432:128674. https://doi.org/10.1016/j.jhazmat.2022.128674
doi: 10.1016/j.jhazmat.2022.128674
Feng W, Huang C, Tan X, et al (2022) Release of the additive metals from 3 commonly used plastics during the degradation under the treatment of UV irradiation. Ecotoxicol 75–84. https://doi.org/10.1007/s10646-021-02467-6
Frias JPGL, Nash R (2019) Microplastics: finding a consensus on the definition. Mar Pollut Bull 138:145–147. https://doi.org/10.1016/j.marpolbul.2018.11.022
doi: 10.1016/j.marpolbul.2018.11.022
Fu L, Li J, Wang G et al (2021) Adsorption behavior of organic pollutants on microplastics. Ecotoxicol Environ Saf 217:112207. https://doi.org/10.1016/j.ecoenv.2021.112207
doi: 10.1016/j.ecoenv.2021.112207
Gallo Neto H, Gomes Bantel C, Browning J et al (2021) Mortality of a juvenile Magellanic penguin (Spheniscus magellanicus, Spheniscidae) associated with the ingestion of a PFF-2 protective mask during the Covid-19 pandemic. Mar Pollut Bull 166:112232. https://doi.org/10.1016/j.marpolbul.2021.112232
doi: 10.1016/j.marpolbul.2021.112232
Galvão A, Aleixo M, De Pablo H et al (2020) Microplastics in wastewater: microfiber emissions from common household laundry. Environ Sci Pollut Res 27:26643–26649. https://doi.org/10.1007/s11356-020-08765-6
doi: 10.1007/s11356-020-08765-6
Gambardella C, Morgana S, Ferrando S et al (2017) Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicol Environ Saf 145:250–257. https://doi.org/10.1016/j.ecoenv.2017.07.036
doi: 10.1016/j.ecoenv.2017.07.036
Gereffi G (2020) What does the COVID-19 pandemic teach us about global value chains? The case of medical supplies. J Int Bus Policy 3:287–301. https://doi.org/10.1057/s42214-020-00062-w
doi: 10.1057/s42214-020-00062-w
Gies EA, LeNoble JL, Noël M et al (2018) Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar Pollut Bull 133:553–561. https://doi.org/10.1016/j.marpolbul.2018.06.006
doi: 10.1016/j.marpolbul.2018.06.006
Godoy V, Martín-Lara MA, Calero M, Blázquez G (2019) Physical-chemical characterization of microplastics present in some exfoliating products from Spain. Mar Pollut Bull 139:91–99. https://doi.org/10.1016/j.marpolbul.2018.12.026
doi: 10.1016/j.marpolbul.2018.12.026
Hamilton BM, Bourdages MPT, Geoffroy C et al (2021) Microplastics around an Arctic seabird colony: particle community composition varies across environmental matrices. Sci Total Environ 773:145536. https://doi.org/10.1016/j.scitotenv.2021.145536
doi: 10.1016/j.scitotenv.2021.145536
Han S, Bang J, Choi D et al (2020) Surface pattern analysis of microplastics and their impact on human-derived cells. ACS Appl Polym Mater 2:4541–4550. https://doi.org/10.1021/acsapm.0c00645
doi: 10.1021/acsapm.0c00645
Hari PK (2012) Types and properties of fibres and yarns used in weaving Pramod. Woodhead Publishing Limited
Hartline NL, Bruce NJ, Karba SN et al (2016) Microfiber masses recovered from conventional machine washing of new or aged garments. Environ Sci Technol 50:11532–11538. https://doi.org/10.1021/acs.est.6b03045
doi: 10.1021/acs.est.6b03045
Henry B, Laitala K, Klepp IG (2019) Microfibres from apparel and home textiles: prospects for including microplastics in environmental sustainability assessment. Sci Total Environ 652:483–494. https://doi.org/10.1016/j.scitotenv.2018.10.166
doi: 10.1016/j.scitotenv.2018.10.166
Hernandez LM, Xu EG, Larsson HCE et al (2019) Plastic teabags release billions of microparticles and nanoparticles into tea. Environ Sci Technol 53:12300–12310. https://doi.org/10.1021/acs.est.9b02540
doi: 10.1021/acs.est.9b02540
Hidayaturrahman H, Lee TG (2019) A study on characteristics of microplastic in wastewater of South Korea: identification, quantification, and fate of microplastics during treatment process. Mar Pollut Bull 146:696–702. https://doi.org/10.1016/j.marpolbul.2019.06.071
doi: 10.1016/j.marpolbul.2019.06.071
Hu J, Qin X, Zhang J et al (2021) Polystyrene microplastics disturb maternal-fetal immune balance and cause reproductive toxicity in pregnant mice. Reprod Toxicol 106:42–50. https://doi.org/10.1016/j.reprotox.2021.10.002
doi: 10.1016/j.reprotox.2021.10.002
Hwang J, Choi D, Han S et al (2019) An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci Total Environ 684:657–669. https://doi.org/10.1016/j.scitotenv.2019.05.071
doi: 10.1016/j.scitotenv.2019.05.071
Hwang J, Choi D, Han S et al (2020) Potential toxicity of polystyrene microplastic particles. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-64464-9
doi: 10.1038/s41598-020-64464-9
Institute of Making (UC London) (2013) Materials - dish sponge. https://www.instituteofmaking.org.uk . Accessed 20 Mar 2022
Iyare PU, Ouki SK, Bond T (2020) Microplastics removal in wastewater treatment plants: a critical review. Environ Sci Water ResTechnol 6:2664–2675. https://doi.org/10.1039/d0ew00397b
doi: 10.1039/d0ew00397b
Jambeck J, Geyer R, Wilcox C et al (2015) Plastic waste inputs from land into the ocean. Science 347:768–771
doi: 10.1126/science.1260352
Jenner LC, Sadofsky LR, Danopoulos E, Rotchell JM (2021) Household indoor microplastics within the Humber region (United Kingdom): quantification and chemical characterisation of particles present. Atmos Environ 259:118512. https://doi.org/10.1016/j.atmosenv.2021.118512
doi: 10.1016/j.atmosenv.2021.118512
Jeong CB, Won EJ, Kang HM et al (2016) Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the Monogonont rotifer (Brachionus koreanus). Environ Sci Technol 50:8849–8857. https://doi.org/10.1021/acs.est.6b01441
doi: 10.1021/acs.est.6b01441
Jessieleena AA, Nambi IM (2023) Distribution of microplastics in the catchment region of Pallikaranai marshland, a Ramsar site in Chennai India. Environ Pollut 318:120890. https://doi.org/10.1016/j.envpol.2022.120890
doi: 10.1016/j.envpol.2022.120890
Jin Y, Xia J, Pan Z et al (2018) Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ Pollut 235:322–329. https://doi.org/10.1016/j.envpol.2017.12.088
doi: 10.1016/j.envpol.2017.12.088
Jovanović B, Gökdağ K, Güven O et al (2018) Virgin microplastics are not causing imminent harm to fish after dietary exposure. Mar Pollut Bull 130:123–131. https://doi.org/10.1016/j.marpolbul.2018.03.016
doi: 10.1016/j.marpolbul.2018.03.016
Kapelewska J, Klekotka U, Ewa Ż, Karpi J (2021) Simultaneous sorption behaviors of UV filters on the virgin and aged micro-high-density polyethylene under environmental conditions. Sci Total Environ 789:147979. https://doi.org/10.1016/j.scitotenv.2021.147979
doi: 10.1016/j.scitotenv.2021.147979
Karami A, Golieskardi A, Keong Choo C et al (2017) The presence of microplastics in commercial salts from different countries. Sci Rep 7:1–11. https://doi.org/10.1038/srep46173
doi: 10.1038/srep46173
Kashfi FS, Ramavandi B, Arfaeinia H et al (2022) Occurrence and exposure assessment of microplastics in indoor dusts of buildings with different applications in Bushehr and Shiraz cities. Iran. Sci Total Environ 829:154651. https://doi.org/10.1016/j.scitotenv.2022.154651
doi: 10.1016/j.scitotenv.2022.154651
Kwon JH, Kim JW, Pham TD et al (2020) Microplastics in food: a review on analytical methods and challenges. Int J Environ Res Public Heal 17:1–23. https://doi.org/10.3390/ijerph17186710
doi: 10.3390/ijerph17186710
Lares M, Ncibi MC, Sillanpää M, Sillanpää M (2018) Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res 133:236–246. https://doi.org/10.1016/j.watres.2018.01.049
doi: 10.1016/j.watres.2018.01.049
Lassen C, Hansen SF, Magnusson K, et al (2015) Microplastics : occurrence, effects and sources of releases to the environment in Denmark. In: Danish Environ. Prot. Agency. https://www.orbit.dtu.dk . Accessed 20 Mar 2022
Lee H, Kim Y (2018) Treatment characteristics of microplastics at biological sewage treatment facilities in Korea. Mar Pollut Bull 137:1–8. https://doi.org/10.1016/j.marpolbul.2018.09.050
doi: 10.1016/j.marpolbul.2018.09.050
Lei K, Qiao F, Liu Q et al (2017) Microplastics releasing from personal care and cosmetic products in China. Mar Pollut Bull 123:122–126. https://doi.org/10.1016/j.marpolbul.2017.09.016
doi: 10.1016/j.marpolbul.2017.09.016
Lei L, Wu S, Lu S et al (2018) Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci Total Environ 619–620:1–8. https://doi.org/10.1016/j.scitotenv.2017.11.103
doi: 10.1016/j.scitotenv.2017.11.103
Li J, Qu X, Su L et al (2016) Microplastics in mussels along the coastal waters of China. Environ Pollut 214:177–184. https://doi.org/10.1016/j.envpol.2016.04.012
doi: 10.1016/j.envpol.2016.04.012
Li X, Li M, Mei Q et al (2021) Aging microplastics in wastewater pipeline networks and treatment processes: physicochemical characteristics and Cd adsorption. Sci Total Environ 797:148940. https://doi.org/10.1016/j.scitotenv.2021.148940
doi: 10.1016/j.scitotenv.2021.148940
Liao Z, Ji X, Ma Y et al (2021) Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China. J Hazard Mat 417:126007. https://doi.org/10.1016/j.jhazmat.2021.126007
doi: 10.1016/j.jhazmat.2021.126007
Liu C, Li J, Zhang Y et al (2019a) Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure. Environ Int 128:116–124. https://doi.org/10.1016/j.envint.2019.04.024
doi: 10.1016/j.envint.2019.04.024
Liu P, Qian L, Wang H et al (2019b) New insights into the aging behavior of microplastics accelerated by advanced oxidation processes. Environ Sci Technol 53:3579–3588. https://doi.org/10.1021/acs.est.9b00493
doi: 10.1021/acs.est.9b00493
Liu W, Zhang J, Liu H et al (2021) A review of the removal of microplastics in global wastewater treatment plants: characteristics and mechanisms. Environ Int 146:106277. https://doi.org/10.1016/j.envint.2020.106277
doi: 10.1016/j.envint.2020.106277
Lu Y, Zhang Y, Deng Y et al (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ Sci Technol 50:4054–4060. https://doi.org/10.1021/acs.est.6b00183
doi: 10.1021/acs.est.6b00183
Ma H, Pu S, Liu S et al (2020) Microplastics in aquatic environments: toxicity to trigger ecological consequences. Environ Pollut 261:114089. https://doi.org/10.1016/j.envpol.2020.114089
doi: 10.1016/j.envpol.2020.114089
Madhumitha CT, Karmegam N, Biruntha M et al (2022) Extraction, identification, and environmental risk assessment of microplastics in commercial toothpaste. Chemosphere 296:133976. https://doi.org/10.1016/j.chemosphere.2022.133976
doi: 10.1016/j.chemosphere.2022.133976
McGoran AR, Clark PF, Smith BD, Morritt D (2020) High prevalence of plastic ingestion by Eriocheir sinensis and Carcinus maenas (Crustacea: Decapoda: Brachyura) in the Thames Estuary. Environ Pollut 265:114972. https://doi.org/10.1016/j.envpol.2020.114972
doi: 10.1016/j.envpol.2020.114972
Mehmood T, Peng L (2022) Polyethylene scaffold net and synthetic grass fragmentation: a source of microplastics in the atmosphere? J Hazard Mat 429:128391. https://doi.org/10.1016/j.jhazmat.2022.128391
doi: 10.1016/j.jhazmat.2022.128391
Meng J, Xu B, Liu F et al (2021) Effects of chemical and natural ageing on the release of potentially toxic metal additives in commercial PVC microplastics. Chemosphere 283:131274. https://doi.org/10.1016/j.chemosphere.2021.131274
doi: 10.1016/j.chemosphere.2021.131274
Murali K, Kenesei K, Li Y et al (2015) Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells. Nanoscale 7:4199–4210. https://doi.org/10.1039/c4nr06849a
doi: 10.1039/c4nr06849a
Napper IE, Barrett AC, Thompson RC (2020) The efficiency of devices intended to reduce microfibre release during clothes washing. Sci Total Environ 738:140412. https://doi.org/10.1016/j.scitotenv.2020.140412
doi: 10.1016/j.scitotenv.2020.140412
Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull 112:39–45. https://doi.org/10.1016/j.marpolbul.2016.09.025
doi: 10.1016/j.marpolbul.2016.09.025
Neves D, Sobral P, Ferreira JL, Pereira T (2015) Ingestion of microplastics by commercial fish off the Portuguese coast. Mar Pollut Bull 101:119–126. https://doi.org/10.1016/j.marpolbul.2015.11.008
doi: 10.1016/j.marpolbul.2015.11.008
O’Brien S, Okoffo ED, O’Brien JW et al (2020) Airborne emissions of microplastic fibres from domestic laundry dryers. Sci Total Environ 747:141175. https://doi.org/10.1016/j.scitotenv.2020.141175
doi: 10.1016/j.scitotenv.2020.141175
Ó Briain O, Marques Mendes AR, McCarron S et al (2020) The role of wet wipes and sanitary towels as a source of white microplastic fibres in the marine environment. Water Res 182:116021. https://doi.org/10.1016/j.watres.2020.116021
doi: 10.1016/j.watres.2020.116021
Ouyang Z, Zhang Z, Jing Y et al (2022) The photo-aging of polyvinyl chloride microplastics under different UV irradiations. Gondwana Res 108:72–80. https://doi.org/10.1016/j.gr.2021.07.010
doi: 10.1016/j.gr.2021.07.010
Paul-Pont I, Lacroix C, González Fernández C et al (2016) Exposure of marine mussels Mytilus spp. to polystyrene microplastics: toxicity and influence on fluoranthene bioaccumulation. Environ Pollut 216:724–737. https://doi.org/10.1016/j.envpol.2016.06.039
doi: 10.1016/j.envpol.2016.06.039
Pedà C, Caccamo L, Fossi MC et al (2016) Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: preliminary results. Environ Pollut 212:251–256. https://doi.org/10.1016/j.envpol.2016.01.083
doi: 10.1016/j.envpol.2016.01.083
Pérez-Reverón R, González-Sálamo J, Hernández-Sánchez C et al (2022) Recycled wastewater as a potential source of microplastics in irrigated soils from an arid-insular territory (Fuerteventura, Spain). Sci Total Environ 817:152830. https://doi.org/10.1016/j.scitotenv.2021.152830
doi: 10.1016/j.scitotenv.2021.152830
Piccardo M, Provenza F, Grazioli E et al (2020) PET microplastics toxicity on marine key species is influenced by pH, particle size and food variations. Sci Total Environ 715:136947. https://doi.org/10.1016/j.scitotenv.2020.136947
doi: 10.1016/j.scitotenv.2020.136947
Picó Y, Barceló D (2019) Analysis and prevention of microplastics pollution in water: current perspectives and future directions. ACS Omega 4:6709–6719. https://doi.org/10.1021/acsomega.9b00222
doi: 10.1021/acsomega.9b00222
Plastics E (2021) Plastics - the Facts 2021. An analysis of European plastics production, demand and waste data
Prata JC, da Costa JP, Lopes I et al (2020a) Environmental status of (micro)plastics contamination in Portugal. Ecotoxicol Environ Saf 200:110753. https://doi.org/10.1016/j.ecoenv.2020.110753
doi: 10.1016/j.ecoenv.2020.110753
Prata JC, da Costa JP, Lopes I et al (2020b) Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 702:134455. https://doi.org/10.1016/j.scitotenv.2019.134455
doi: 10.1016/j.scitotenv.2019.134455
Prata JC, Castro JL, da Costa JP et al (2020c) The importance of contamination control in airborne fibers and microplastic sampling: experiences from indoor and outdoor air sampling in Aveiro. Portugal. Marine Pollut Bull 159:111522. https://doi.org/10.1016/j.marpolbul.2020.111522
doi: 10.1016/j.marpolbul.2020.111522
Praveena SM, Shaifuddin SNM, Akizuki S (2018) Exploration of microplastics from personal care and cosmetic products and its estimated emissions to marine environment: an evidence from Malaysia. Mar Pollut Bull 136:135–140. https://doi.org/10.1016/j.marpolbul.2018.09.012
doi: 10.1016/j.marpolbul.2018.09.012
Qiao R, Sheng C, Lu Y et al (2019) Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci Total Environ 662:246–253. https://doi.org/10.1016/j.scitotenv.2019.01.245
doi: 10.1016/j.scitotenv.2019.01.245
Qiongjie W, Yong Z, Yangyang Z et al (2022) Effects of biofilm on metal adsorption behavior and microbial community of microplastics. J Hazard Mat 424:127340. https://doi.org/10.1016/j.jhazmat.2021.127340
doi: 10.1016/j.jhazmat.2021.127340
Ragusa A, Svelato A, Santacroce C et al (2021) Plasticenta: first evidence of microplastics in human placenta. Environ Int 146:106274. https://doi.org/10.1016/j.envint.2020.106274
doi: 10.1016/j.envint.2020.106274
Rainwayfilters (2022) Rainway filters. In: https://www.rainyfilters.com/products/rainy-filters . https://rainwayfilters.com/ . Accessed 24 Mar 2022
Rainyfilters (2022) Rainy filters. In: Rainyfilters. https://www.rainyfilters.com . Accessed 24 Mar 2022
Ren X, Tang J, Wang L, Liu Q (2021) Microplastics in soil-plant system: effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues. Plant Soil 462:561–576. https://doi.org/10.1007/s11104-021-04869-1
doi: 10.1007/s11104-021-04869-1
Revel M, Châtel A, Mouneyrac C (2018) Micro(nano)plastics: a threat to human health? Curr Opin Environ Sci Heal 1:17–23. https://doi.org/10.1016/j.coesh.2017.10.003
doi: 10.1016/j.coesh.2017.10.003
Richard H, Carpenter EJ, Komada T et al (2019) Biofilm facilitates metal accumulation onto microplastics in estuarine waters. Sci Total Environ 683:600–608. https://doi.org/10.1016/j.scitotenv.2019.04.331
doi: 10.1016/j.scitotenv.2019.04.331
SAGES (2020) N95 mask re-use strategies. In: Soc. Am. Gastrointest. Endosc. Surg. https://www.sages.org . Accessed 15 Mar 2022
Santana-Viera S, Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ (2021) UV filters and UV stabilisers adsorbed in microplastic debris from beach sand. Mar Pollut Bull 168:112434. https://doi.org/10.1016/j.marpolbul.2021.112434
doi: 10.1016/j.marpolbul.2021.112434
Schirinzi GF, Pérez-Pomeda I, Sanchís J et al (2017) Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ Res 159:579–587. https://doi.org/10.1016/j.envres.2017.08.043
doi: 10.1016/j.envres.2017.08.043
Setälä O, Fleming-Lehtinen V, Lehtiniemi M (2014) Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut 185:77–83. https://doi.org/10.1016/j.envpol.2013.10.013
doi: 10.1016/j.envpol.2013.10.013
Shruti VC, Pérez-Guevara F, Elizalde-Martínez I, Kutralam-Muniasamy G (2020) First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks - future research and environmental considerations. Sci Total Environ 726:138580. https://doi.org/10.1016/j.scitotenv.2020.138580
doi: 10.1016/j.scitotenv.2020.138580
So WK, Chan K, Not C (2018) Abundance of plastic microbeads in Hong Kong coastal water. Mar Pollut Bull 133:500–505. https://doi.org/10.1016/j.marpolbul.2018.05.066
doi: 10.1016/j.marpolbul.2018.05.066
Sobhani Z, Luo Y, Gibson CT et al (2022) Collecting microplastics in gardens: case study (ii) from ropes. Environ Technol Innov 26:102322. https://doi.org/10.1016/j.eti.2022.102322
doi: 10.1016/j.eti.2022.102322
Soltani NS, Taylor MP, Wilson SP (2021) Quantification and exposure assessment of microplastics in Australian indoor house dust. Environ Pollut 283:117064. https://doi.org/10.1016/j.envpol.2021.117064
doi: 10.1016/j.envpol.2021.117064
Stock V, Laurisch C, Franke J et al (2021) Uptake and cellular effects of PE, PP, PET and PVC microplastic particles. Toxicol Vitr 70:105021. https://doi.org/10.1016/j.tiv.2020.105021
doi: 10.1016/j.tiv.2020.105021
Sussarellu R, Suquet M, Thomas Y et al (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci USA 113:2430–2435. https://doi.org/10.1073/pnas.1519019113
doi: 10.1073/pnas.1519019113
Talvitie J, Mikola A, Koistinen A, Setälä O (2017) Solutions to microplastic pollution – removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res 123:401–407. https://doi.org/10.1016/j.watres.2017.07.005
doi: 10.1016/j.watres.2017.07.005
Torres-Agullo A, Karanasiou A, Moreno T, Lacorte S (2022) Airborne microplastic particle concentrations and characterization in indoor urban microenvironments. Environ Pollut 308:119707. https://doi.org/10.2139/ssrn.4058106
doi: 10.2139/ssrn.4058106
Tympa LE, Katsara K, Moschou PN et al (2021) Do microplastics enter our food chain via root vegetables? A raman based spectroscopic study on raphanus sativus. Materials (basel) 14:1–11. https://doi.org/10.3390/ma14092329
doi: 10.3390/ma14092329
Uddin S, Fowler SW, Habibi N et al (2022) Indoor aerosol — Kuwait’s baseline. Toxics 10:71. https://doi.org/10.3390/toxics10020071
doi: 10.3390/toxics10020071
Ustabasi GS, Baysal A (2019) Occurrence and risk assessment of microplastics from various toothpastes. Environ Monit Assess 191:438. https://doi.org/10.1007/s10661-019-7574-1
doi: 10.1007/s10661-019-7574-1
Van Cauwenberghe L, Claessens M, Vandegehuchte MB, Janssen CR (2015) Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ Pollut 199:10–17. https://doi.org/10.1016/j.envpol.2015.01.008
doi: 10.1016/j.envpol.2015.01.008
Vianello A, Jensen RL, Liu L, Vollertsen J (2019) Simulating human exposure to indoor airborne microplastics using a breathing thermal manikin. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-45054-w
doi: 10.1038/s41598-019-45054-w
Wang J, Guo X, Xue J (2021) Biofilm-developed microplastics as vectors of pollutants in aquatic environments. Environ Sci Technol 55:12780–12790. https://doi.org/10.1021/acs.est.1c04466
doi: 10.1021/acs.est.1c04466
Watts AJR, Urbina MA, Corr S et al (2015) Ingestion of plastic microfibers by the crab Carcinus maenas and its effect on food consumption and energy balance. Environ Sci Technol 49:14597–14604. https://doi.org/10.1021/acs.est.5b04026
doi: 10.1021/acs.est.5b04026
Watts AJR, Urbina MA, Goodhead R et al (2016) Effect of microplastic on the gills of the shore crab Carcinus maenas. Environ Sci Technol 50:5364–5369. https://doi.org/10.1021/acs.est.6b01187
doi: 10.1021/acs.est.6b01187
Weber A, Schwiebs A, Solhaug H et al (2022) Nanoplastics affect the inflammatory cytokine release by primary human monocytes and dendritic cells. Environ Int 163:107173. https://doi.org/10.1016/j.envint.2022.107173
doi: 10.1016/j.envint.2022.107173
Wu X, Liu P, Wang H et al (2021) Photo aging of polypropylene microplastics in estuary water and coastal seawater: important role of chlorine ion. Water Res 202:117396. https://doi.org/10.1016/j.watres.2021.117396
doi: 10.1016/j.watres.2021.117396
Xumiao L, Prata JC, Alves JR, et al (2021) Airborne microplastics and fibers in indoor residential environments in Aveiro, Portugal. Environmental Advances 6:. https://doi.org/10.1016/j.envadv.2021.100134
Yang Y, Liu W, Zhang Z et al (2020) Microplastics provide new microbial niches in aquatic environments. Appl Microbiol Biotechnol 104:6501–6511. https://doi.org/10.1007/s00253-020-10704-x
doi: 10.1007/s00253-020-10704-x
Yao Y, Glamoclija M, Murphy A, Gao Y (2022) Characterization of microplastics in indoor and ambient air in northern New Jersey. Environ Res 207:112142. https://doi.org/10.1016/j.envres.2021.112142
doi: 10.1016/j.envres.2021.112142
Yu P, Liu Z, Wu D et al (2018) Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver. Aquat Toxicol 200:28–36. https://doi.org/10.1016/j.aquatox.2018.04.015
doi: 10.1016/j.aquatox.2018.04.015
Yu X, Lang M, Huang D et al (2022) Photo-transformation of microplastics and its toxicity to Caco-2 cells. Sci Total Environ 806:150954. https://doi.org/10.1016/j.scitotenv.2021.150954
doi: 10.1016/j.scitotenv.2021.150954
Yurtsever M (2019) Tiny, shiny, and colorful microplastics: are regular glitters a significant source of microplastics? Mar Pollut Bull 146:678–682. https://doi.org/10.1016/j.marpolbul.2019.07.009
doi: 10.1016/j.marpolbul.2019.07.009
Zhang J, Wang L, Kannan K (2019) Polyethylene terephthalate and polycarbonate microplastics in pet food and feces from the United States. Environ Sci Technol 53:12035–12042. https://doi.org/10.1021/acs.est.9b03912
doi: 10.1021/acs.est.9b03912
Zhang J, Wang L, Kannan K (2020a) Microplastics in house dust from 12 countries and associated human exposure. Environ Int 134:105314. https://doi.org/10.1016/j.envint.2019.105314
doi: 10.1016/j.envint.2019.105314
Zhang Q, Zhao Y, Du F et al (2020b) Microplastic fallout in different indoor environments. Environ Sci Technol 54:6530–6539. https://doi.org/10.1021/acs.est.0c00087
doi: 10.1021/acs.est.0c00087
Zhang T, Sun Y, Song K et al (2021) Microplastics in different tissues of wild crabs at three important fishing grounds in China. Chemosphere 271:129479. https://doi.org/10.1016/j.chemosphere.2020.129479
doi: 10.1016/j.chemosphere.2020.129479
Zhang X, Liu C, Liu J et al (2022) Release of microplastics from typical rainwater facilities during aging process. Sci Total Environ 813:152674. https://doi.org/10.1016/j.scitotenv.2021.152674
doi: 10.1016/j.scitotenv.2021.152674
Zhu J, Zhang X, Liao K et al (2022) Microplastics in dust from different indoor environments. Sci Total Environ 833:155256. https://doi.org/10.1016/j.scitotenv.2022.155256
doi: 10.1016/j.scitotenv.2022.155256
Zhu K, Jia H, Sun Y et al (2020) Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: roles of reactive oxygen species. Water Res 173:115564. https://doi.org/10.1016/j.watres.2020.115564
doi: 10.1016/j.watres.2020.115564
Ziajahromi S, Kumar A, Neale PA, Leusch FDL (2017a) Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures. Environ Sci Technol 51:13397–13406. https://doi.org/10.1021/acs.est.7b03574
Ziajahromi S, Neale PA, Rintoul L, Leusch FDL (2017b) Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Res 112:93–99. https://doi.org/10.1016/j.watres.2017.01.042
Zimmermann L, Göttlich S, Oehlmann J et al (2020) What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna. Environ Pollut 267:115392. https://doi.org/10.1016/j.envpol.2020.115392
doi: 10.1016/j.envpol.2020.115392