Do hip resurfacing and short hip stem arthroplasties differ from conventional hip stem replacement regarding impingement-free range of motion?


Journal

Journal of orthopaedic research : official publication of the Orthopaedic Research Society
ISSN: 1554-527X
Titre abrégé: J Orthop Res
Pays: United States
ID NLM: 8404726

Informations de publication

Date de publication:
11 2023
Historique:
revised: 14 04 2023
received: 06 01 2023
accepted: 01 05 2023
medline: 23 10 2023
pubmed: 3 5 2023
entrez: 3 5 2023
Statut: ppublish

Résumé

Total hip joint replacement (THR) is clinically well-established. In this context, the resulting range of motion (ROM) is crucial for patient satisfaction when performing joint movements. However, the ROM for THR with different bone preserving strategies (short hip stem and hip resurfacing) raises the question of whether the ROM is comparable with conventional hip stems. Therefore, this computer-based study aimed to investigate the ROM and type of impingement for different implant systems. An established framework with computer-aided design 3D models based on magnetic resonance imaging data of 19 patients with hip osteoarthritis was used to analyse the ROM for three different implant systems (conventional hip stem vs. short hip stem vs. hip resurfacing) during typical joint movements. Our results revealed that all three designs led to mean maximum flexion higher than 110°. However, hip resurfacing showed less ROM (-5% against conventional and -6% against short hip stem). No significant differences were observed between the conventional and short hip stem during maximum flexion and internal rotation. Contrarily, a significant difference was detected between the conventional hip stem and hip resurfacing during internal rotation (p = 0.003). The ROM of the hip resurfacing was lower than the conventional and short hip stem during all three movements. Furthermore, hip resurfacing shifted the impingement type to implant-to-bone impingement compared with the other implant designs. The calculated ROMs of the implant systems achieved physiological levels during maximum flexion and internal rotation. However, bone impingement was more likely during internal rotation with increasing bone preservation. Despite the larger head diameter of hip resurfacing, the ROM examined was substantially lower than that of conventional and short hip stem.

Identifiants

pubmed: 37132090
doi: 10.1002/jor.25584
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2501-2515

Informations de copyright

© 2023 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.

Références

Klauber J, Wasem J, Beivers A, Mostert C. Krankenhaus-Report: Versorgungsketten - Der Patient im Mittelpunkt. Springer: 2021. doi:10.1007/978-3-662-62708-2
Kurtz SM, Ong KL, Lau E, Bozic KJ. Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J Bone Jt Surg. 2014;96(8):624-630. doi:10.2106/JBJS.M.00285
Patel RM, Stulberg SD. The rationale for short uncemented stems in total hip arthroplasty. Orthop Clin North Am. 2014;45(1):19-31. doi:10.1016/j.ocl.2013.08.007
Ettinger M, Ettinger P, Ezechieli M, et al. CCD and offset after Nanos short stem in total hip arthroplasty. Technol Health Care. 2013;21(2):149-155. doi:10.3233/THC-130716
Thorey F, Hoefer C, Abdi-Tabari N, Lerch M, Budde S, Windhagen H. Clinical results of the metha short hip stem: a perspective for younger patients? Orthop Rev. 2013;5(4):e34. doi:10.4081/or.2013.e34
Boese CK, Bredow J, Ettinger M, et al. The influence of hip rotation on femoral offset following short stem total hip arthroplasty. J Arthroplasty. 2016;31(1):312-316. doi:10.1016/j.arth.2015.07.027
Floerkemeier T, Weltin J, Budde S, et al. A short stem with metaphyseal anchorage reveals a more physiological strain pattern compared to a standard stem-an experimental study in cadavaric bone. Acta Bioeng Biomech. 2019;21:153-159. doi:10.5277/ABB-01345-2019-02
Kluess D, Zietz C, Lindner T, Mittelmeier W, Schmitz K-P, Bader R. Limited range of motion of hip resurfacing arthroplasty due to unfavorable ratio of prosthetic head size and femoral neck diameter. Acta Orthop. 2008;79(6):748-754. doi:10.1080/17453670810016803
Girard J, Lavigne M, Vendittoli P-A, Roy AG. Biomechanical reconstruction of the hip: a randomised study comparing total hip resurfacing and total hip arthroplasty. J Bone Joint Surg Br. 2006;88(6):721-726. doi:10.1302/0301-620X.88B6.17447
Bieger R, Ignatius A, Decking R, Claes L, Reichel H, Dürselen L. Primary stability and strain distribution of cementless hip stems as a function of implant design. Clinical Biomechanics. 2012;27(2):158-164. doi:10.1016/j.clinbiomech.2011.08.004
Banerjee S, Pivec R, Issa K, Harwin SF, Mont MA, Khanuja HS. Outcomes of short stems in total hip arthroplasty. Orthopedics. 2013;36(9):700-707. doi:10.3928/01477447-20130821-06
Loppini M, Grappiolo G. Uncemented short stems in primary total hip arthroplasty: the state of the art. EFORT Open Rev. 2018;3(5):149-159. doi:10.1302/2058-5241.3.170052
Jahnke A, Ghandourah S, Fonseca Ulloa CA, et al. Comparison of short stems versus straight hip stems: a biomechanical analysis of the primary torsional stability. J Biomech Eng. 2020;142(12):124502. doi:10.1115/1.4047659
Grigoris P, Roberts P, Panousis K, Bosch H. The evolution of hip resurfacing arthroplasty. Orthop Clin North Am. 2005;36(2):125-134. doi:10.1016/j.ocl.2005.01.006
Mont MA, Ragland PS, Etienne G, Seyler TM, Schmalzried TP. Hip resurfacing arthroplasty. J Am Acad Orthop Surg. 2006;14(8):454-463. doi:10.5435/00124635-200608000-00003
Ong KL, Kurtz SM, Manley MT, Rushton N, Mohammed NA, Field RE. Biomechanics of the Birmingham hip resurfacing arthroplasty. J Bone Joint Surg Br. 2006;88(8):1110-1115. doi:10.1302/0301-620X.88B8.17567
Drosos GI, Touzopoulos P. Short stems in total hip replacement: evidence on primary stability according to the stem type. HIP Int. 2019;29(2):118-127. doi:10.1177/1120700018811811
Nadzadi ME, Pedersen DR, Callaghan JJ, Brown TD. Effects of acetabular component orientation on dislocation propensity for small-head-size total hip arthroplasty. Clin Biomech. 2002;17(1):32-40. doi:10.1016/s0268-0033(01)00096-1
Burroughs BR, Hallstrom B, Golladay GJ, Hoeffel D, Harris WH. Range of motion and stability in total hip arthroplasty with 28-, 32-, 38-, and 44-mm femoral head sizes. J Arthroplasty. 2005;20(1):11-19. doi:10.1016/j.arth.2004.07.008
He R, Yan S, Wu L, Wang X, Dai X. Position of the prosthesis and the incidence of dislocation following total hip replacement. Chin Med J. 2007;120(13):1140-1144.
Brown TD, Callaghan JJ. (ii) Impingement in total hip replacement: mechanisms and consequences. Curr Orthop. 2008;22(6):376-391. doi:10.1016/j.cuor.2008.10.009
Brown TD, Elkins JM, Pedersen DR, Callaghan JJ. Impingement and dislocation in total hip arthroplasty: mechanisms and consequences. Iowa Orthop J. 2014;34:1-15.
Ezquerra L, Quilez MP, Pérez MÁ, Albareda J, Seral B. Range of movement for impingement and dislocation avoidance in total hip replacement predicted by finite element model. J Med Biol Eng. 2017;37(1):26-34. doi:10.1007/s40846-016-0210-4
Widmer K-H. The impingement-free, prosthesis-specific, and anatomy-adjusted combined target zone for component positioning in THA depends on design and implantation parameters of both components. Clin Orthop Relat Res. 2020;478(8):1904-1918. doi:10.1097/CORR.0000000000001233
Pour AE, Schwarzkopf R, Patel KP, Anjaria M, Lazennec JY, Dorr LD. Is combined anteversion equally affected by acetabular cup and femoral stem anteversion? J Arthroplasty. 2021;36(7):2393-2401. doi:10.1016/j.arth.2021.02.017
Marker DR, Strimbu K, McGrath MS, Zywiel MG, Mont MA. Resurfacing versus conventional total hip arthroplasty - review of comparative clinical and basic science studies. Bull NYU Hosp Jt Dis. 2009;67(2):120-127.
Kebbach M, Schulze C, Meyenburg C, et al. An MRI-based patient-specific computational framework for the calculation of range of motion of total hip replacements. Appl Sci. 2021;11(6):2852. doi:10.3390/app11062852
Kouyoumdjian P, Coulomb R, Sanchez T, Asencio G. Clinical evaluation of hip joint rotation range of motion in adults. Orthop Traumatol Surg Res. 2012;98(1):17-23. doi:10.1016/j.otsr.2011.08.015
Wilson JJ, Furukawa M. Evaluation of the patient with hip pain. Am Fam Physician. 2014;89(1):27-34.
Han S, Owens VL, Patel RV, et al. The continuum of hip range of motion: from soft-tissue restriction to bony impingement. J Orthop Res. 2020;38(8):1779-1786. doi:10.1002/jor.24594
Kataoka T, Oshima Y, Iizawa N, Majima T, Takai S. Influence of total knee arthroplasty on hip rotational range of motion. J Nippon Med Sch. 2020;87(4):191-196. doi:10.1272/jnms.JNMS.2020_87-401
Dunlap K, Shands AR, Hollister LC, Gaul JS, Streit HA. A new method for determination of torsion of the femur. J Bone Joint Surg. 1953;35-A(2):289-311.
Murray D. The definition and measurement of acetabular orientation. J Bone Joint Surg Br. 1993;75(2):228-232. doi:10.1302/0301-620X.75B2.8444942
Liaw C-K, Yang R-S, Hou S-M, Wu T-Y, Fuh C-S. Measurement of the acetabular cup anteversion on simulated radiographs. J Arthroplasty. 2009;24(3):468-474. doi:10.1016/j.arth.2007.10.029
Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet. 2007;370(9597):1508-1519. doi:10.1016/S0140-6736(07)60457-7
D'LIMA DD, Urquhart AG, Buehler KO, Walker RH, Colwell CW. The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios. J Bone Joint Surg Am Vol. 2000;82(3):315-321. doi:10.2106/00004623-200003000-00003
Jolles BM, Zangger P, Leyvraz P-F. Factors predisposing to dislocation after primary total hip arthroplasty. J Arthroplasty. 2002;17(3):282-288. doi:10.1054/arth.2002.30286
Sariali E, Klouche S, Mamoudy P. Investigation into three dimensional hip anatomy in anterior dislocation after THA. Influence of the position of the hip rotation centre. Clin Biomech. 2012;27(6):562-567. doi:10.1016/j.clinbiomech.2011.12.014
Shoji T, Yasunaga Y, Yamasaki T, Mori R, Hamanishi M, Ochi M. Bony impingement depends on the bone morphology of the hip after total hip arthroplasty. Int Orthop. 2013;37(10):1897-1903. doi:10.1007/s00264-013-1979-1
Atkins PR, Hananouchi T, Anderson AE, Aoki SK. Inclusion of the acetabular labrum reduces simulated range of motion of the hip compared with bone contact models. Arthrosc Sports Med Rehab. 2020;2(6):e779-e787. doi:10.1016/j.asmr.2020.07.014
Klingenstein GG, Yeager AM, Lipman JD, Westrich GH. Computerized range of motion analysis following dual mobility total hip arthroplasty, traditional total hip arthroplasty, and hip resurfacing. J Arthroplasty. 2013;28(7):1173-1176. doi:10.1016/j.arth.2012.08.017
Shoji T, Yasunaga Y, Yamasaki T, Izumi S, Hachisuka S, Ochi M. Low femoral antetorsion as a risk factor for bony impingement after bipolar hemiarthroplasty. J Orthop Surg Res. 2015;10:105. doi:10.1186/s13018-015-0248-y
Nakamura N, Maeda Y, Hamawaki M, Sakai T, Sugano N. Effect of soft-tissue impingement on range of motion during posterior approach Total Hip Arthroplasty: an in vivo measurement study. Comput Assist Surg. 2016;21(1):132-136. doi:10.1080/24699322.2016.1223347
Kessler O, Patil S, Stefan W, Mayr E, Colwell CW, D'Lima DD. Bony impingement affects range of motion after total hip arthroplasty: a subject-specific approach. J Orthop Res. 2008;26(4):443-452. doi:10.1002/jor.20541
Widmer K-H, Majewski M. The impact of the CCD-angle on range of motion and cup positioning in total hip arthroplasty. Clin Biomech. 2005;20(7):723-728. doi:10.1016/j.clinbiomech.2005.04.003
Shon WY, Gupta S, Biswal S, et al. Validation of a simple radiographic method to determine variations in pelvic and acetabular cup sagittal plane alignment after total hip arthroplasty. Skeletal Radiol. 2008;37(12):1119-1127. doi:10.1007/s00256-008-0550-4
Tang H, Li Y, Zhou Y, Wang S, Zhao Y, Ma Z. A modeling study of a patient-specific safe zone for THA: calculation, validation, and key factors based on standing and sitting sagittal pelvic tilt. Clin Orthop Relat Res. 2022;480(1):191-205. doi:10.1097/CORR.0000000000001923
Yun H, Murphy WS, Ward DM, Zheng G, Hayden BL, Murphy SB. Effect of pelvic tilt and rotation on cup orientation in both supine and standing positions. J Arthroplasty. 2018;33(5):1442-1448. doi:10.1016/j.arth.2017.11.069
Pour AE, Schwarzkopf R, Patel KPK, Anjaria MP, Lazennec JY, Dorr LD. How much change in pelvic sagittal tilt can result in hip dislocation due to prosthetic impingement? A computer simulation study. J Orthop Res. 2021;39(12):2604-2614. doi:10.1002/jor.25022
Kliewe C, Souffrant R, Kluess D, Woernle C, Brökel K, Bader R. Analytisches berechnungsmodell zur bestimmung des einflusses konstruktiver und operativer faktoren auf den bewegungsumfang von hüftendoprothesen. Biomedizinische Technik/Biomed Eng. 2010;55(1):47-55. doi:10.1515/BMT.2010.005
Rodriguez-Elizalde S, Yeager AM, Ravi B, Lipman JD, Salvati EA, Westrich GH. Computerized virtual surgery demonstrates where acetabular rim osteophytes most reduce range of motion following total hip arthroplasty. HSS J. 2013;9(3):223-228. doi:10.1007/s11420-013-9337-9
Zijlstra WP, van den Akker-Scheek I, Zee MJM, van Raay JJAM. No clinical difference between large metal-on-metal total hip arthroplasty and 28-mm-head total hip arthroplasty. Int Orthop. 2011;35(12):1771-1776. doi:10.1007/s00264-011-1233-7
Davis KE, Ritter MA, Berend ME, Meding JB. The importance of range of motion after total hip arthroplasty. Clin Orthop Relat Res. 2007;465:180-184. doi:10.1097/BLO.0b013e31815c5a64
Penny JØ, Ovesen O, Varmarken J-E, Overgaard S. Similar range of motion and function after resurfacing large-head or standard total hip arthroplasty. Acta Orthop. 2013;84(3):246-253. doi:10.3109/17453674.2013.788435
Bader R, Steinhauser E, Gradinger R, Willmann G, Mittelmeier W. Computergestützte Bewegungssimulation an Hüftendoprothesen mit Keramik-Keramik-Gleitpaarung. Analyse der Einflussparameter implantat-design und position. Z Orthop Ihre Grenzgeb. 2002;140(3):310-316. doi:10.1055/s-2002-32476
Bader R, Klüß D, Gerdesmeyer L, Steinhauser E. Biomechanische Aspekte zur Implantatverankerung und Kinematik von Oberflächenersatzhüftendoprothesen. Orthopade. 2008;37(7):634-643. doi:10.1007/s00132-008-1285-6
Widmer K-H. Impingementfreie Bewegung nach Hüft-TEP - wie realisieren? Z Orthop Unfall. 2016;154(4):392-397. doi:10.1055/s-0042-108065
Miki H, Kyo T, Sugano N. Anatomical hip range of motion after implantation during total hip arthroplasty with a large change in pelvic inclination. J Arthroplasty. 2012;27(9):1641-1650. doi:10.1016/j.arth.2012.03.002
Tannast M, Kubiak-Langer M, Langlotz F, Puls M, Murphy SB, Siebenrock KA. Noninvasive three-dimensional assessment of femoroacetabular impingement. J Orthop Res. 2007;25(1):122-131. doi:10.1002/jor.20309
Zanetti EM, Bignardi C, Terzini M, Putame G, Audenino AL. A multibody model for the optimization of hip arthroplasty in relation to range of movement. Aust Med J. 2018;11(10):486-491. doi:10.21767/AMJ.2018.3444
Hua X, Li J, Wang L, Jin Z, Wilcox R, Fisher J. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions. J Biomech. 2014;47(13):3303-3309. doi:10.1016/j.jbiomech.2014.08.015
Hua X, Wang L, Al-Hajjar M, Jin Z, Wilcox RK, Fisher J. Experimental validation of finite element modelling of a modular metal-on-polyethylene total hip replacement. Proc Inst Mech Eng Part H. 2014;228(7):682-692. doi:10.1177/0954411914541830
Liu F, Williams S, Fisher J. Effect of microseparation on contact mechanics in metal-on-metal hip replacements-a finite element analysis. J Biomed Mater Res Part B Appl Biomater. 2015;103(6):1312-1319. doi:10.1002/jbm.b.33313
Arndt C, Görgner A, Klöhn C, Scholz R, Voigt C. Shear stress and von Mises stress distributions in the periphery of an embedded acetabular cup implant during impingement. Biomed Eng/Biomedizinische Technik. 2017;62(3):279-288. doi:10.1515/bmt-2016-0107
Hariri S, Chun S, Cowan JB, Bragdon C, Malchau H, Rubash HE. Range of motion in a modular femoral stem system with a variety of neck options. J Arthroplasty. 2013;28(9):1625-1633. doi:10.1016/j.arth.2012.10.011
Wu C-H, Lin C-C, Lu T-W, Hou S-M, Hu C-C, Yeh L-S. Evaluation of ranges of motion of a new constrained acetabular prosthesis for canine total hip replacement. Biomed Eng Online. 2013;12:116. doi:10.1186/1475-925X-12-116
Putame G, Pascoletti G, Franceschini G, Dichio G, Terzini M. Prosthetic hip ROM from multibody software simulation. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2019:5386-5389. doi:10.1109/EMBC.2019.8856993
Palit A, King R, Hart Z, et al. Bone-to-bone and implant-to-bone impingement: a novel graphical representation for hip replacement planning. Ann Biomed Eng. 2020;48(4):1354-1367. doi:10.1007/s10439-020-02451-x
Bengs BC, Sangiorgio SN, Ebramzadeh E. Less range of motion with resurfacing arthroplasty than with total hip arthroplasty: in vitro examination of 8 designs. Acta Orthop. 2008;79(6):755-762. doi:10.1080/17453670810016812
Bader R, Scholz R, Steinhauser E, Busch R, Mittelmeier W. Methode zur Evaluierung von Einflußfaktoren auf die Luxationsstabilität von künstlichen Hüftgelenken/method for the evaluation of factors influencing the dislocation stability of total hip endoprotheses. Biomedizinische Technik/Biomed Eng. 2004;49(5):137-145. doi:10.1515/BMT.2004.027
Kluess D, Martin H, Mittelmeier W, Schmitz K-P, Bader R. Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement. Med Eng Phys. 2007;29(4):465-471. doi:10.1016/j.medengphy.2006.07.001

Auteurs

Maeruan Kebbach (M)

Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany.

Christian Schulze (C)

Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany.

Christian Meyenburg (C)

Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany.

Daniel Kluess (D)

Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany.

Mevluet Sungu (M)

Research and Development, Aesculap AG, Tuttlingen, Germany.

Albrecht Hartmann (A)

Department of Orthopedic Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Klaus-Peter Günther (KP)

Department of Orthopedic Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Rainer Bader (R)

Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH