Pathological imaging-assisted cancer gene-environment interaction analysis.
assisted analysis
cancer G-E interaction analysis
high-dimensional penalization
pathological imaging
Journal
Biometrics
ISSN: 1541-0420
Titre abrégé: Biometrics
Pays: United States
ID NLM: 0370625
Informations de publication
Date de publication:
03 May 2023
03 May 2023
Historique:
received:
11
06
2022
accepted:
26
04
2023
pmc-release:
03
11
2024
pubmed:
3
5
2023
medline:
3
5
2023
entrez:
3
5
2023
Statut:
aheadofprint
Résumé
Gene-environment (G-E) interactions have important implications for cancer outcomes and phenotypes beyond the main G and E effects. Compared to main-effect-only analysis, G-E interaction analysis more seriously suffers from a lack of information caused by higher dimensionality, weaker signals, and other factors. It is also uniquely challenged by the "main effects, interactions" variable selection hierarchy. Effort has been made to bring in additional information to assist cancer G-E interaction analysis. In this study, we take a strategy different from the existing literature and borrow information from pathological imaging data. Such data are a "byproduct" of biopsy, enjoys broad availability and low cost, and has been shown as informative for modeling prognosis and other cancer outcomes/phenotypes in recent studies. Building on penalization, we develop an assisted estimation and variable selection approach for G-E interaction analysis. The approach is intuitive, can be effectively realized, and has competitive performance in simulation. We further analyze The Cancer Genome Atlas (TCGA) data on lung adenocarcinoma (LUAD). The outcome of interest is overall survival, and for G variables, we analyze gene expressions. Assisted by pathological imaging data, our G-E interaction analysis leads to different findings with competitive prediction performance and stability.
Identifiants
pubmed: 37132273
doi: 10.1111/biom.13873
pmc: PMC10622332
mid: NIHMS1902900
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIH HHS
ID : CA196530
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA204120
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA121974
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA196530
Pays : United States
Organisme : NIH HHS
ID : CA121974
Pays : United States
Organisme : NIH HHS
ID : CA204120
Pays : United States
Informations de copyright
© 2023 The International Biometric Society.
Références
BMC Cancer. 2021 May 26;21(1):619
pubmed: 34039308
Sci Rep. 2020 Sep 14;10(1):15030
pubmed: 32929170
Am J Epidemiol. 2017 Oct 1;186(7):753-761
pubmed: 28978193
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1099-108
pubmed: 23959844
Biometrics. 2019 Jun;75(2):625-637
pubmed: 30430548
Nat Rev Genet. 2005 Apr;6(4):287-98
pubmed: 15803198
Biometrics. 2022 Dec;78(4):1542-1554
pubmed: 34213006
Cancers (Basel). 2019 Apr 24;11(4):
pubmed: 31022926
Genet Epidemiol. 2017 Dec;41(8):779-789
pubmed: 28913902
Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2202113119
pubmed: 36095183
BioTech (Basel). 2021 Jan 29;10(1):
pubmed: 35822775
Sci Transl Med. 2012 Oct 24;4(157):157ra143
pubmed: 23100629
Biostatistics. 2015 Apr;16(2):326-38
pubmed: 25406332
Biol Proced Online. 2015 Aug 07;17:11
pubmed: 26251640
Biometrics. 2010 Sep;66(3):934-48
pubmed: 19930190
Stat Med. 2019 Apr 30;38(9):1620-1633
pubmed: 30637789
Cell. 2019 Mar 21;177(1):38-44
pubmed: 30901546
Biometrics. 2016 Jun;72(2):629-38
pubmed: 26496228
Ann Stat. 2013 Jun;41(3):1111-1141
pubmed: 26257447
Biometrics. 2022 Dec;78(4):1614-1625
pubmed: 34343342
Bioinformatics. 2009 Feb 1;25(3):401-5
pubmed: 19073588
Biometrics. 2020 Mar;76(1):23-35
pubmed: 31424088