Spontaneous induced bone fusion in minimally invasive fusionless bipolar fixation in neuromuscular scoliosis: a computed tomography analysis.
Autofusion
Fusionless bipolar technique
Neuromuscular scoliosis
Posterior spinal fusion
Spinal stiffness
Journal
European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
ISSN: 1432-0932
Titre abrégé: Eur Spine J
Pays: Germany
ID NLM: 9301980
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
received:
17
01
2023
accepted:
22
04
2023
revised:
11
04
2023
medline:
26
6
2023
pubmed:
3
5
2023
entrez:
3
5
2023
Statut:
ppublish
Résumé
Posterior spinal fusion (PSF) at skeletal maturity is still the gold standard in children with neuromuscular scoliosis (NMS) who underwent fusionless surgery. The aim of this computed tomography (CT) study was to quantify the spontaneous bone fusion at the end of a lengthening program by minimally invasive fusionless bipolar fixation (MIFBF), that could avoid PSF. NMS operated on with MIFBF from T1 to the pelvis and at final lengthening program were included. CT was performed at least five years postoperatively. The autofusion was classified as completely or not fused at the facets joint (on both coronal and sagittal plane, right and left side, from T1 to L5), and around the rods (axial plane, right and left side, from T5 to L5). Vertebral body heights were assessed. Ten patients were included (10.7y ± 2 at initial surgery). Mean Cobb angle was 82 ± 20 preoperatively and 37 ± 13 at last follow-up. CT were performed on average 6.7y ± 1.7 after initial surgery. Mean preoperative and last follow-up thoracic vertebrae height were respectively 13.5 mm ± 1.7 and 17.4 mm ± 1.7 (p < 0.001). 93% facets joints were fused (out of 320 analyzed joints), corresponding to 15/16 vertebral levels. Ossification around the rods was observed in 6.5±2.4 levels out of 13 in the convex side, and 4.2 ± 2.2 in the concave side (p = 0.04). This first computed quantitative study showed MIFBF in NMS preserved spinal growth, while it induced 93% of facet joints fusion. This could be is an additional argument when questionning the real need for PSF at skeletal maturity.
Identifiants
pubmed: 37133763
doi: 10.1007/s00586-023-07745-x
pii: 10.1007/s00586-023-07745-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2550-2557Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Thometz JG, Simon SR (1988) Progression of scoliosis after skeletal maturity in institutionalized adults who have cerebral palsy. J Bone Joint Surg Am 70A:1290–1296
doi: 10.2106/00004623-198870090-00002
Saito N, Ebara S, Ohotsuka K et al (1998) Natural history of scoliosis in spastic cerebral palsy. Lancet 351:1687–1692. https://doi.org/10.1016/S0140-6736(98)01302-6
doi: 10.1016/S0140-6736(98)01302-6
pubmed: 9734885
Fernandes P, Weinstein SL (2007) Natural history of early onset scoliosis. J Bone Joint Surg Am 89(Suppl 1):21–33. https://doi.org/10.2106/JBJS.F.00754
doi: 10.2106/JBJS.F.00754
pubmed: 17272420
Bowen RE, Scaduto AA, Banuelos S (2008) Does early thoracic fusion exacerbate preexisting restrictive lung disease in congenital scoliosis patients? J Pediatr Orthop 28:506–511. https://doi.org/10.1097/BPO.0b013e31817b931c
doi: 10.1097/BPO.0b013e31817b931c
pubmed: 18580363
Campbell RM, Smith MD, Mayes TC, Mangos JA, Willey Courand DB, Kose N, Pinero RF, Adler ME, Duong HL, Surber JL (2003) The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am 85:399–408. https://doi.org/10.2106/00004623-200303000-00001
doi: 10.2106/00004623-200303000-00001
pubmed: 12637423
Goldberg CJ, Moore DP, Fogarty EE, Dowling FE (2002) Long-term results from in situ fusion for congenital vertebral deformity. Spine 27:619–628. https://doi.org/10.1097/00007632-200203150-00011
doi: 10.1097/00007632-200203150-00011
pubmed: 11884910
Karol LA, Johnston C, Mladenov K, Schochet P, Walters P, Browne RH (2008) Pulmonary function following early thoracic fusion in non-neuromuscular scoliosis. J Bone Joint Surg Am 90:1272–1281. https://doi.org/10.2106/JBJS.G.00184
doi: 10.2106/JBJS.G.00184
pubmed: 18519321
Dubousset J, Herring JA, Shufflebarger H (1989) The crankshaft phenomenon. J Pediatr Orthop 9:541–550. https://doi.org/10.1097/01241398-198909010-00008
doi: 10.1097/01241398-198909010-00008
pubmed: 2794027
Zhang H, Sucato DJ (2008) Unilateral pedicle screw epiphysiodesis of the neurocentral synchondrosis. Production of idiopathic-like scoliosis in an immature animal model. J Bone Joint Surg Am 90:2460–2469. https://doi.org/10.2106/JBJS.G.01493
doi: 10.2106/JBJS.G.01493
pubmed: 18978416
Chest Wall and Spine Deformity Study Group, Growing Spine Study Group, Pediatric Orthopaedic Society of North America, Scoliosis Research Society Growing Spine Study Committee, Skaggs DL, Akbarnia BA, Flynn JM, Myung KS, Sponseller PD, Vitale MG (2014) A classification of growth friendly spine implants. J Pediatr Orthop 34(3):260–274. https://doi.org/10.1097/BPO.0000000000000073
doi: 10.1097/BPO.0000000000000073
Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA (2005) Dual growing rod technique for the treatment of progressive early-onset scoliosis: a multicenter study. Spine 30:S46–S57. https://doi.org/10.1097/01.brs.0000175190.08134.73
doi: 10.1097/01.brs.0000175190.08134.73
pubmed: 16138066
Balsano M, Spina M (2020) Idiopathic early-onset scoliosis treated with Magec rods: what to do after the lengthening period is over? Int J Spine Surg 14(5):847–851. https://doi.org/10.14444/7094 . (Epub 2020 Aug 25)
doi: 10.14444/7094
pubmed: 32991304
pmcid: 7671457
Poe-Kochert C, Shannon C, Pawelek JB, Thompson GH, Hardesty CK, Marks DS, Akbarnia BA, McCarthy RE, Emans JB (2016) Final fusion after growing-rod treatment for early onset scoliosis: is it final? J Bone Joint Surg Am 98(22):1913–1917. https://doi.org/10.2106/JBJS.15.01334
doi: 10.2106/JBJS.15.01334
pubmed: 27852908
Growing Spine Study Group, Flynn JM, Tomlinson LA, Pawelek J, Thompson GH, McCarthy R, Akbarnia BA (2013) Growing-rod graduates: lessons learned from ninetynine patients who completed lengthening. J Bone Joint Surg Am 95(19):1745–1750. https://doi.org/10.2106/JBJS.L.01386
doi: 10.2106/JBJS.L.01386
Pediatric Spine Study Group, Du JY, Poe-Kochert C, Thompson GH, Hardesty CK, Pawelek JB, Flynn JM, Emans JB (2020) Risk factors for reoperation following final fusion after the treatment of early-onset scoliosis with traditional growing rods. J Bone Joint Surg Am 102(19):1672–1678. https://doi.org/10.2106/JBJS.20.00312
doi: 10.2106/JBJS.20.00312
Growing Spine Study Group, Jain A, Sponseller PD, Flynn JM, Shah SA, Thompson GH, Means JB, Pawelek JB, Akbarnia BA (2016) Avoidance of “Final” surgical fusion after growing-rod treatment for early-onset scoliosis. J Bone Joint Surg Am 98(13):1073–1078. https://doi.org/10.2106/JBJS.15.01241
doi: 10.2106/JBJS.15.01241
Bouthors C, Gaume M, Glorion C, Miladi L (2019) Outcomes at skeletal maturity of 34 children with scoliosis treated with a traditional single growing rod. Spine 44(23):1630–1637. https://doi.org/10.1097/BRS.0000000000003148
doi: 10.1097/BRS.0000000000003148
pubmed: 31725685
Gaume M, Vergari C, Khouri N, Skalli W, Glorion C, Miladi L (2021) Minimally invasive surgery for neuromuscular scoliosis: results and complications at a minimal follow-up of 5 years. Spine 46(24):1696–1704. https://doi.org/10.1097/BRS.0000000000004082
doi: 10.1097/BRS.0000000000004082
pubmed: 33907082
Shao Y-H, Tsai K, Kim S, Yu-Jen Wu Y-J, Demissie K (2019) Exposure to tomographic scans and cancer risks. JNCI Cancer Spectr 4(1):pkz072. https://doi.org/10.1093/jncics/pkz072
doi: 10.1093/jncics/pkz072
pubmed: 32337490
pmcid: 7050152
Miladi L, Gaume M, Khouri N et al (2018) Minimally invasive surgery for neuromuscular scoliosis: results and complications in a series of one hundred patients. Spine 43:E968–E975. https://doi.org/10.1097/BRS.0000000000002588
doi: 10.1097/BRS.0000000000002588
pubmed: 29419720
pmcid: 6080881
Gaume M, Persohn S, Vergari C et al (2020) Biomechanical cadaver study of proximal fixation in a minimally invasive bipolar construct. Spine Deform 8:33–38. https://doi.org/10.1007/s43390-019-00014-2
doi: 10.1007/s43390-019-00014-2
pubmed: 31925759
Dubousset J, Gaume M, Miladi L (2021) Ilio-sacral screw pelvic fixation when correcting spinal deformities with or without pelvic obliquity: our experience over 40 years. Spine Deform 9:665–670. https://doi.org/10.1007/s43390-020-00263-6
doi: 10.1007/s43390-020-00263-6
pubmed: 33403658
Miladi LT, Ghanem IB, Draoui MM et al (1997) Ilio-sacral screw fixation for pelvic obliquity in neuromuscular scoliosis. Long-term Followup study Spine 22:1722–1729. https://doi.org/10.1007/s00402-021-04332-x
doi: 10.1007/s00402-021-04332-x
pubmed: 9259782
Gaume M, Gerard P, Khouri N, Glorion C, Dubousset J, Miladi L (2022) Long-term outcomes of ilio-sacral screws in minimally invasive bipolar fusionless technique for neuromuscular scoliosis: a retrospective study in 167 patients. Arch Orthop Trauma Surg 143(4):1761–1767. https://doi.org/10.1007/s00402-021-04332-x
doi: 10.1007/s00402-021-04332-x
pubmed: 35041079
Frobin W, Brinckmann P, Biggemann M, Tillotson M, Burton K (1997) Precision measurement of disc height, vertebral height, and sagittal plane displacement from lateral radiographic views of the lumbar spine. Clin Biomech (Bristol, Avon) 12(Suppl 1):S1–S63. https://doi.org/10.1016/s0268-0033(96)00067-8
doi: 10.1016/s0268-0033(96)00067-8
pubmed: 11430783
de Reuver S, Costa L, Van Rheenen H, Tabeling CS, Lemans JVC, Schlösser TPC, Kruyt MC, Van Stralen M, Castelein RM (2022) Disc and vertebral body morphology from birth to adulthood. Spine 47(7):E312–E318. https://doi.org/10.1097/BRS.0000000000004278
doi: 10.1097/BRS.0000000000004278
pubmed: 34798645
Cobb JR (ed) (1948) Outline for the study of scoliosis. Instructional course lectures 5:261–275
Moe JH, Kharrat K, Winter RB et al (1984) Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children. Clin Orthop Relat Res 185:35–45
doi: 10.1097/00003086-198405000-00006
Mardjetko SM, Hammerberg KW, Lubicky JP et al (1992) The Luque trolley revisited, review of nine cases requiring revision. Spine 17:582–589. https://doi.org/10.1097/00007632-199205000-00018
doi: 10.1097/00007632-199205000-00018
pubmed: 1621159
Cahill PJ, Marvil S, Cuddihy L, Schutt C, Idema J, Clements DH, Antonacci MD, Asghar J, Samdani AF, Betz RR (2010) Autofusion in the immature spine treated with growing rods. Spine 35(22):E1199-1203. https://doi.org/10.1097/BRS.0b013e3181e21b50
doi: 10.1097/BRS.0b013e3181e21b50
pubmed: 20683383
Sankar WN, Skaggs DL, Yazici M et al (2011) Lengthening of dual growing rods and the law of diminishing returns. Spine 36:806–809. https://doi.org/10.1097/BRS.0b013e318214d78f
doi: 10.1097/BRS.0b013e318214d78f
pubmed: 21336236
Noordeen HM, Shah SA, Elsebaie HB et al (2011) In vivo distraction force and length measurements of growing rods: which factors influence the ability to lengthen? Spine 36:2299–2303. https://doi.org/10.1097/BRS.0b013e31821b8e16
doi: 10.1097/BRS.0b013e31821b8e16
pubmed: 21494191
Tsirikos AI, Lipton G, Chang WN et al (2008) Surgical correction of scoliosis in pediatric patients with cerebral palsy using the unit rod instrumentation. Spine 33:1133–1140. https://doi.org/10.1097/BRS.0b013e31816f63cf
doi: 10.1097/BRS.0b013e31816f63cf
pubmed: 18449049
Tsirikos AI, Mains E (2012) Surgical correction of spinal deformity in patients why cerebral palsy using pedicle screws instrumentation. J Spinal Disord Tech 25:404–408. https://doi.org/10.1097/BSD.0b013e318227728c
doi: 10.1097/BSD.0b013e318227728c
Kocyigit IA, Olgun ZD, Demirkiran HG, Ayvaz M, Yazici M (2017) Graduation protocol after growing-rod treatment: removal of implants without new instrumentation is not a realistic approach. J Bone Joint Surg Am 99(18):1554–1564. https://doi.org/10.2106/JBJS.17.00031
doi: 10.2106/JBJS.17.00031
pubmed: 28926385
Murphy RF, Barfield WR, Emans JB, Akbarnia B et al (2020) Minimum 5-year follow-up on graduates of growing spine surgery for early onset scoliosis. J Pediatr Orthop 40(10):e942–e946. https://doi.org/10.1097/BPO.0000000000001646
doi: 10.1097/BPO.0000000000001646
pubmed: 32773654
Pediatric Spine Study Group, Akbarnia BA, Pawelek JB, Hosseini P, Salari P, Kabirian N, Marks D, Shah SA, Skaggs DL, Emans JB, Elsebaie H, Thompson GH, Sponseller PD (2022) Treatment of early-onset scoliosis: similar outcomes despite different etiologic subtypes in traditional growing rod graduates. J Pediatr Orthop. 42(1):10–16. https://doi.org/10.1097/BPO.0000000000001985
doi: 10.1097/BPO.0000000000001985
Abul-Kasim K et al (2009) Low-dose helical computed helical tomography (CT) in the perioperative work-up of adolescent idiopathic scoliosis. Eur Radiol 19(3):610–618. https://doi.org/10.1007/s00330-008-1178-4
doi: 10.1007/s00330-008-1178-4
pubmed: 18810453