Reconfigurable signal modulation in a ferroelectric tunnel field-effect transistor.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
03 May 2023
Historique:
received: 25 01 2023
accepted: 24 04 2023
medline: 4 5 2023
pubmed: 4 5 2023
entrez: 3 5 2023
Statut: epublish

Résumé

Reconfigurable transistors are an emerging device technology adding new functionalities while lowering the circuit architecture complexity. However, most investigations focus on digital applications. Here, we demonstrate a single vertical nanowire ferroelectric tunnel field-effect transistor (ferro-TFET) that can modulate an input signal with diverse modes including signal transmission, phase shift, frequency doubling, and mixing with significant suppression of undesired harmonics for reconfigurable analogue applications. We realize this by a heterostructure design in which a gate/source overlapped channel enables nearly perfect parabolic transfer characteristics with robust negative transconductance. By using a ferroelectric gate oxide, our ferro-TFET is non-volatilely reconfigurable, enabling various modes of signal modulation. The ferro-TFET shows merits of reconfigurability, reduced footprint, and low supply voltage for signal modulation. This work provides the possibility for monolithic integration of both steep-slope TFETs and reconfigurable ferro-TFETs towards high-density, energy-efficient, and multifunctional digital/analogue hybrid circuits.

Identifiants

pubmed: 37137907
doi: 10.1038/s41467-023-38242-w
pii: 10.1038/s41467-023-38242-w
pmc: PMC10156808
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2530

Subventions

Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 101019147
Organisme : Vetenskapsrådet (Swedish Research Council)
ID : 2016-06186

Informations de copyright

© 2023. The Author(s).

Références

Nano Lett. 2017 Jul 12;17(7):4373-4380
pubmed: 28613894
ACS Appl Mater Interfaces. 2021 Feb 17;13(6):7470-7475
pubmed: 33528986
ACS Appl Mater Interfaces. 2020 Oct 7;12(40):44919-44925
pubmed: 32940452
Nano Lett. 2010 Sep 8;10(9):3648-55
pubmed: 20677775
Nat Commun. 2022 Nov 17;13(1):7042
pubmed: 36396630
Nature. 2011 Nov 16;479(7373):317-23
pubmed: 22094691
Nat Commun. 2022 Apr 25;13(1):2235
pubmed: 35468880
Nano Lett. 2012 Jan 11;12(1):119-24
pubmed: 22111808
Nature. 2011 Nov 16;479(7373):329-37
pubmed: 22094693
Nano Lett. 2016 Apr 13;16(4):2295-300
pubmed: 26928906
Adv Mater. 2019 Jul;31(29):e1808265
pubmed: 31116897
ACS Appl Electron Mater. 2022 Jan 25;4(1):531-538
pubmed: 35098137
Nano Lett. 2017 Sep 13;17(9):5495-5501
pubmed: 28823157
Adv Mater. 2022 Apr;34(15):e2109491
pubmed: 35146811
Nanotechnology. 2018 Oct 26;29(43):435201
pubmed: 30091724
Nanotechnology. 2014 Oct 24;25(42):425201
pubmed: 25264978

Auteurs

Zhongyunshen Zhu (Z)

Department of Electrical and Information Technology, Lund University, 221 00, Lund, Sweden. zhongyunshen.zhu@eit.lth.se.

Anton E O Persson (AEO)

Department of Electrical and Information Technology, Lund University, 221 00, Lund, Sweden.

Lars-Erik Wernersson (LE)

Department of Electrical and Information Technology, Lund University, 221 00, Lund, Sweden. lars-erik.wernersson@eit.lth.se.

Classifications MeSH