Human acute microelectrode array recordings with broad cortical access, single-unit resolution, and parallel behavioral monitoring.
CP: Neuroscience
awake neurosurgery
local field potentials
microelectrode array
neurotechnology
numerical cognition
single unit recording
Journal
Cell reports
ISSN: 2211-1247
Titre abrégé: Cell Rep
Pays: United States
ID NLM: 101573691
Informations de publication
Date de publication:
30 05 2023
30 05 2023
Historique:
received:
19
11
2022
revised:
06
01
2023
accepted:
18
04
2023
medline:
5
6
2023
pubmed:
4
5
2023
entrez:
4
5
2023
Statut:
ppublish
Résumé
There are vast gaps in our understanding of the organization and operation of the human nervous system at the level of individual neurons and their networks. Here, we report reliable and robust acute multichannel recordings using planar microelectrode arrays (MEAs) implanted intracortically in awake brain surgery with open craniotomies that grant access to large parts of the cortical hemisphere. We obtained high-quality extracellular neuronal activity at the microcircuit, local field potential level and at the cellular, single-unit level. Recording from the parietal association cortex, a region rarely explored in human single-unit studies, we demonstrate applications on these complementary spatial scales and describe traveling waves of oscillatory activity as well as single-neuron and neuronal population responses during numerical cognition, including operations with uniquely human number symbols. Intraoperative MEA recordings are practicable and can be scaled up to explore cellular and microcircuit mechanisms of a wide range of human brain functions.
Identifiants
pubmed: 37141095
pii: S2211-1247(23)00478-3
doi: 10.1016/j.celrep.2023.112467
pmc: PMC10242451
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
112467Informations de copyright
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of interests The authors declare no competing interests.
Références
Nat Neurosci. 2017 Apr;20(4):590-601
pubmed: 28218914
Nature. 2006 Jul 13;442(7099):164-71
pubmed: 16838014
J Neural Eng. 2017 Aug;14(4):044001
pubmed: 28332484
Science. 2020 Mar 6;367(6482):1131-1134
pubmed: 32139543
Science. 2020 Jun 26;368(6498):
pubmed: 32586990
Neuroimage. 2021 Feb 1;226:117579
pubmed: 33221441
Nat Neurosci. 2006 Dec;9(12):1549-57
pubmed: 17115042
Neuron. 2012 Jul 26;75(2):218-29
pubmed: 22841308
Neuron. 2015 Oct 7;88(1):220-35
pubmed: 26447583
J Neurosci. 2008 Dec 17;28(51):13828-44
pubmed: 19091973
J Neurosci. 2015 Sep 9;35(36):12477-87
pubmed: 26354915
Neuron. 2018 Jun 27;98(6):1269-1281.e4
pubmed: 29887341
Science. 2020 Dec 4;370(6521):1191-1196
pubmed: 33273097
Neuron. 2018 Jan 3;97(1):209-220.e3
pubmed: 29249283
Cognition. 2011 Oct;121(1):147-53
pubmed: 21679934
Science. 2015 May 22;348(6237):906-10
pubmed: 25999506
Elife. 2022 May 26;11:
pubmed: 35616527
J Clin Invest. 2021 Dec 1;131(23):
pubmed: 34665780
Science. 2009 Mar 13;323(5920):1496-9
pubmed: 19286561
Nat Rev Neurosci. 2016 Jun;17(6):366-82
pubmed: 27150407
Nat Hum Behav. 2020 Dec;4(12):1265-1272
pubmed: 32929205
Comput Intell Neurosci. 2011;2011:156869
pubmed: 21253357
Front Hum Neurosci. 2011 Apr 25;5:40
pubmed: 21629859
Science. 2022 May 6;376(6593):eabm9922
pubmed: 35511978
Nature. 2012 Aug 9;488(7410):218-21
pubmed: 22722841
Neuron. 2022 Aug 3;110(15):2409-2421.e3
pubmed: 35679860
Neuron. 2021 Sep 15;109(18):2995-3011.e5
pubmed: 34534456
Nature. 2021 Mar;591(7851):610-614
pubmed: 33505022
Front Neuroeng. 2014 Jul 21;7:24
pubmed: 25100989
Neuron. 2018 Aug 8;99(3):588-597.e5
pubmed: 30092215
J Neurosci. 2012 Feb 15;32(7):2453-60
pubmed: 22396419
Science. 2006 Sep 8;313(5792):1431-5
pubmed: 16960005
Nat Neurosci. 2019 Jun;22(6):1010-1020
pubmed: 31011224
J Neurosci. 2011 Jun 15;31(24):8699-705
pubmed: 21677152
Sci Transl Med. 2020 Apr 8;12(538):
pubmed: 32269166
J Neurosci Methods. 2017 Sep 01;289:39-47
pubmed: 28687520
Neuron. 2014 Jul 2;83(1):226-37
pubmed: 24991963
Elife. 2021 Nov 15;10:
pubmed: 34779398
Neurobiol Dis. 2019 Jul;127:303-311
pubmed: 30898669
Science. 2022 Jul 8;377(6602):eabo0924
pubmed: 35737810
PLoS Comput Biol. 2022 Jan 28;18(1):e1009827
pubmed: 35089915
J Neural Eng. 2021 Aug 23;18(4):
pubmed: 34352736
N Engl J Med. 2008 Jan 3;358(1):18-27
pubmed: 18172171
Med Image Anal. 2002 Jun;6(2):129-42
pubmed: 12045000
Nature. 2021 May;593(7858):249-254
pubmed: 33981047
Neuron. 2015 Apr 8;86(1):79-91
pubmed: 25856488
Neurosurg Focus. 2006 May 15;20(5):E4
pubmed: 16711661
Elife. 2017 Feb 21;6:
pubmed: 28220753
Neuron. 2018 Nov 7;100(3):753-761.e4
pubmed: 30244883
Nature. 2010 Apr 8;464(7290):903-7
pubmed: 20336071
Front Neurosci. 2018 Nov 29;12:862
pubmed: 30555290
Sci Transl Med. 2016 Oct 19;8(361):361ra141
pubmed: 27738096
Nat Commun. 2021 Jan 12;12(1):337
pubmed: 33436585
Curr Biol. 2017 Apr 3;27(7):1026-1032
pubmed: 28318972
Nat Neurosci. 2011 May;14(5):635-41
pubmed: 21441925
Nat Commun. 2016 Mar 29;7:11098
pubmed: 27020798
Nat Neurosci. 2022 Feb;25(2):252-263
pubmed: 35102333
Nat Rev Neurosci. 2018 May;19(5):255-268
pubmed: 29563572