Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
04 05 2023
Historique:
received: 16 06 2020
accepted: 18 04 2023
medline: 8 5 2023
pubmed: 5 5 2023
entrez: 4 5 2023
Statut: epublish

Résumé

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High levels of free fatty acids in the liver impair hepatic lysosomal acidification and reduce autophagic flux. We investigate whether restoration of lysosomal function in NAFLD recovers autophagic flux, mitochondrial function, and insulin sensitivity. Here, we report the synthesis of novel biodegradable acid-activated acidifying nanoparticles (acNPs) as a lysosome targeting treatment to restore lysosomal acidity and autophagy. The acNPs, composed of fluorinated polyesters, remain inactive at plasma pH, and only become activated in lysosomes after endocytosis. Specifically, they degrade at pH of ~6 characteristic of dysfunctional lysosomes, to further acidify and enhance the function of lysosomes. In established in vivo high fat diet mouse models of NAFLD, re-acidification of lysosomes via acNP treatment restores autophagy and mitochondria function to lean, healthy levels. This restoration, concurrent with reversal of fasting hyperglycemia and hepatic steatosis, indicates the potential use of acNPs as a first-in-kind therapeutic for NAFLD.

Identifiants

pubmed: 37142604
doi: 10.1038/s41467-023-38165-6
pii: 10.1038/s41467-023-38165-6
pmc: PMC10160018
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2573

Subventions

Organisme : NIAAA NIH HHS
ID : R01 AA026914
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG060456
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG063373
Pays : United States
Organisme : NIBIB NIH HHS
ID : T32 EB006359
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Ahmed, M. Non-alcoholic fatty liver disease in 2015. World J. Hepatol. 7, 1450–1459 (2015).
pubmed: 26085906 pmcid: 4462685 doi: 10.4254/wjh.v7.i11.1450
Bozorgzadeh, A. et al. Survival outcomes in liver transplantation for hepatocellular carcinoma, comparing impact of hepatitis C versus other etiology of cirrhosis. Liver Transplant. 13, 807–813 (2007).
doi: 10.1002/lt.21054
Chitturi, S. Treatment options for nonalcoholic Fatty liver disease. Therap. Adv. Gastroenterol. 1, 173–189 (2008).
pubmed: 21180527 pmcid: 3002502 doi: 10.1177/1756283X08096951
Cassidy, S. & Syed, B. A. Nonalcoholic steatohepatitis (NASH) drugs market. Nat. Rev. Drug Discov. 15, 745–746 (2016).
pubmed: 27807356 doi: 10.1038/nrd.2016.188
Portillo-Sanchez, P. & Cusi, K. Treatment of Nonalcoholic Fatty Liver Disease (NAFLD) in patients with type 2 diabetes mellitus. Clin. Diabetes Endocrinol. 2, 9 (2016).
pubmed: 28702244 pmcid: 5471954 doi: 10.1186/s40842-016-0027-7
Tolman, K. G. & Dalpiaz, A. S. Treatment of non-alcoholic fatty liver disease. Ther. Clin. Risk Manag. 3, 1153–1163 (2007).
pubmed: 18516264 pmcid: 2387293
Chang, E., Park, C. & Park, S. W. Role of thiazolidinediones, insulin sensitizers, in non‐alcoholic fatty liver disease. J. Diabetes Investig. 4, 517–524 (2013).
pubmed: 24843703 pmcid: 4020244 doi: 10.1111/jdi.12107
Buzzetti, E., Pinzani, M. & Tsochatzis, E. A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 65, 1038–1048 (2016).
pubmed: 26823198 doi: 10.1016/j.metabol.2015.12.012
Alkhouri, N., Dixon, L. J. & Feldstein, A. E. Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal. Expert Rev. Gastroenterol. Hepatol. 3, 445–451 (2009).
pubmed: 19673631 pmcid: 2775708 doi: 10.1586/egh.09.32
Kwanten, W. J., Martinet, W., Michielsen, P. P. & Francque, S. M. Role of autophagy in the pathophysiology of nonalcoholic fatty liver disease: a controversial issue. World J. Gastroenterol. 20, 7325–7338 (2014).
pubmed: 24966603 pmcid: 4064078 doi: 10.3748/wjg.v20.i23.7325
Gonzalez-Rodriguez, A. et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5, e1179 (2014).
pubmed: 24743734 pmcid: 4001315 doi: 10.1038/cddis.2014.162
Park, H.-W. & Lee, J. H. Calcium channel blockers as potential therapeutics for obesity-associated autophagy defects and fatty liver pathologies. Autophagy 10, 2385–2386 (2014).
pubmed: 25484079 doi: 10.4161/15548627.2014.984268
Lavallard, V. J. & Gual, P. Autophagy and non-alcoholic fatty liver disease. Biomed. Res. Int. 2014, 120179 (2014).
pubmed: 25295245 pmcid: 4175790 doi: 10.1155/2014/120179
Fukuo, Y. et al. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol. Res. 44, 1026–1036 (2014).
pubmed: 24299564 doi: 10.1111/hepr.12282
Inami, Y. et al. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem. Biophys. Res. Commun. 412, 618–625 (2011).
pubmed: 21856284 doi: 10.1016/j.bbrc.2011.08.012
Las, G., Serada, S. B., Wikstrom, J. D., Twig, G. & Shirihai, O. S. Fatty acids suppress autophagic turnover in β-cells. J. Biol. Chem. 286, 42534–42544 (2011).
pubmed: 21859708 pmcid: 3234912 doi: 10.1074/jbc.M111.242412
Schneider, J. L. & Cuervo, A. M. Autophagy and human disease: emerging themes. Curr. Opin. Genet. Dev. 26, 16–23 (2014).
pubmed: 24907664 doi: 10.1016/j.gde.2014.04.003
Kroemer, G. Autophagy: a druggable process that is deregulated in aging and human disease. J. Clin. Invest. 125, 1–4 (2015).
pubmed: 25654544 pmcid: 4382251 doi: 10.1172/JCI78652
Kawai, A., Uchiyama, H., Takano, S., Nakamura, N. & Ohkuma, S. Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells. Autophagy 3, 154–157 (2007).
pubmed: 17204842 doi: 10.4161/auto.3634
Yamamoto, A. et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 23, 33–42 (1998).
pubmed: 9639028 doi: 10.1247/csf.23.33
Turk, B. & Turk, V. Lysosomes as “Suicide Bags” in cell death: myth or reality? J. Biol. Chem. 284, 21783–21787 (2009).
pubmed: 19473965 pmcid: 2755904 doi: 10.1074/jbc.R109.023820
Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929 (2007).
pubmed: 17912264 doi: 10.1038/nrm2272
Kost, J. & Langer, R. Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 46, 125–148 (2001).
pubmed: 11259837 doi: 10.1016/S0169-409X(00)00136-8
Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).
pubmed: 18654426 doi: 10.1038/nnano.2007.387
Gratton, S. E. A. et al. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 105, 11613–11618 (2008).
pubmed: 18697944 pmcid: 2575324 doi: 10.1073/pnas.0801763105
Patel, T., Zhou, J., Piepmeier, J. M. & Saltzman, W. M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev. 64, 701–705 (2012).
pubmed: 22210134 doi: 10.1016/j.addr.2011.12.006
Zhang, Q. et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13, 1182–1190 (2018).
pubmed: 30177807 doi: 10.1038/s41565-018-0254-4
Baltazar, G. C. et al. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells. PLoS ONE 7, e49635 (2012).
pubmed: 23272048 pmcid: 3525582 doi: 10.1371/journal.pone.0049635
Carlson, J. G., Truong, J. G., Anderson, J. T., Rotto, N. T. Strong Carboxylic Acid Functional Polyurethane Polymers and Blends Thereof Used in Magnetic Recording Media. EP0772642A1 (1996).
Guidoin, R. et al. The benefits of fluoropassivation of polyester arterial prostheses as observed in a canine model. ASAIO J. 40, M870–M879 (1994).
pubmed: 8555637 doi: 10.1097/00002480-199407000-00121
Zhao, X. In Woodhead Publishing Series in Biomaterials. 247–265 https://doi.org/10.1533/9780857092939.2.247 (Woodhead Publishing, 2011).
Miladi, K., Sfar, S., Fessi, H. & Elaissari, A. in Polymer Nanoparticles for Nanomedicines: A Guide for their Design, Preparation and Development. 17–53 (eds. Vauthier, C. & Ponchel, G.) (Springer International Publishing, 2016).
Gekle, M. & Silbernagl, S. Comparison of the buffer capacity of endocytotic vesicles, lysosomes and cytoplasm in cells derived from the proximal tubule of the kidney (opossum kidney cells). Pflugers Arch. 429, 452–454 (1995).
pubmed: 7761271 doi: 10.1007/BF00374165
Zeng, J., Shirihai, O. S. & Grinstaff, M. W. Degradable nanoparticles restore lysosomal pH and autophagic flux in lipotoxic pancreatic beta cells. Adv. Healthc. Mater. 1801511, https://doi.org/10.1002/adhm.201801511 (2019).
Lee, J.-H. et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by alzheimer-related PS1 mutations. Cell 141, 1146–1158 (2010).
pubmed: 20541250 pmcid: 3647462 doi: 10.1016/j.cell.2010.05.008
Zhang, S., Li, J., Lykotrafitis, G., Bao, G. & Suresh, S. Size-dependent endocytosis of nanoparticles. Adv. Mater. 21, 419–424 (2009).
pubmed: 19606281 pmcid: 2709876 doi: 10.1002/adma.200801393
Oh, N. & Park, J.-H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine 9, 51–63 (2014).
pubmed: 24872703 pmcid: 4024976
Alsabeeh, N., Chausse, B., Kakimoto, P. A., Kowaltowski, A. J. & Shirihai, O. Cell culture models of fatty acid overload: problems and solutions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 143–151 (2018).
pubmed: 29155055 doi: 10.1016/j.bbalip.2017.11.006
Trudeau, K. M. et al. Lysosome acidification by photoactivated nanoparticles restores autophagy under lipotoxicity. J. Cell Biol. 214, 25–34 (2016).
pubmed: 27377248 pmcid: 4932370 doi: 10.1083/jcb.201511042
Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17, 1–382 (2021).
pubmed: 33634751 pmcid: 7996087 doi: 10.1080/15548627.2020.1797280
Chittaranjan, S., Bortnik, S. & Gorski, S. M. Monitoring autophagic flux by using lysosomal inhibitors and western blotting of endogenous MAP1LC3B. Cold Spring Harb. Protoc. 2015, 743–750 (2015).
pubmed: 26240408 doi: 10.1101/pdb.prot086256
Irimia, J. M. et al. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice. J. Biol. Chem. 292, 10455–10464 (2017).
pubmed: 28483921 pmcid: 5481557 doi: 10.1074/jbc.M117.786525
Eldar-Finkelman, H. Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol. Med. 8, 126–132 (2002).
pubmed: 11879773 doi: 10.1016/S1471-4914(01)02266-3
Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).
pubmed: 27525571 pmcid: 5132626 doi: 10.1038/nmat4718
Sonavane, G., Tomoda, K. & Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B. Biointerfaces 66, 274–280 (2008).
pubmed: 18722754 doi: 10.1016/j.colsurfb.2008.07.004
Park, J.-K. et al. Cellular distribution of injected PLGA-nanoparticles in the liver. Nanomedicine 12, 1365–1374 (2016).
pubmed: 26961463 doi: 10.1016/j.nano.2016.01.013
Sadauskas, E. et al. Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol. 4, 10 (2007).
pubmed: 17949501 pmcid: 2146996 doi: 10.1186/1743-8977-4-10
Hsieh, S.-L. E. & Yang, C.-Y. CLEC4F, A Kupffer cells specific marker, is critical for presentation of alfa-galactoceromide to NKT cells (78.38). J. Immunol. 182, 78.38 LP–78.38 (2009).
doi: 10.4049/jimmunol.182.Supp.78.38
Kawashita, E., Ishihara, K., Nomoto, M., Taniguchi, M. & Akiba, S. A comparative analysis of hepatic pathological phenotypes in C57BL/6J and C57BL/6N mouse strains in non-alcoholic steatohepatitis models. Sci. Rep. 9, 204 (2019).
pubmed: 30659241 pmcid: 6338790 doi: 10.1038/s41598-018-36862-7
Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).
pubmed: 15915461 doi: 10.1002/hep.20701
García-Ruiz, C. & Fernández-Checa, J. C. Mitochondrial oxidative stress and antioxidants balance in fatty liver disease. Hepatol. Commun. 2, 1425–1439 (2018).
pubmed: 30556032 pmcid: 6287487 doi: 10.1002/hep4.1271
Shum, M., Ngo, J., Shirihai, O. S. & Liesa, M. Mitochondrial oxidative function in NAFLD: friend or foe? Mol. Metab. 101134 https://doi.org/10.1016/j.molmet.2020.101134 (2020).
Monteleon, C. L. et al. Lysosomes support the degradation, signaling, and mitochondrial metabolism necessary for human epidermal differentiation. J. Invest. Dermatol. 138, 1945–1954 (2018).
pubmed: 29526763 pmcid: 6521870 doi: 10.1016/j.jid.2018.02.035
Assali, E. A. et al. Nanoparticle-mediated lysosomal reacidification restores mitochondrial turnover and function in β cells under lipotoxicity. FASEB J. 33, 4154–4165 (2019).
pubmed: 30550357 doi: 10.1096/fj.201801292R
Acin-Perez, R. et al. A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO J. 39, e104073 (2020).
pubmed: 32432379 pmcid: 7327496 doi: 10.15252/embj.2019104073
Müller, F. A. & Sturla, S. J. Human in vitro models of nonalcoholic fatty liver disease. Curr. Opin. Toxicol. 16, 9–16 (2019).
doi: 10.1016/j.cotox.2019.03.001
Xiong, S., Zhao, X., Heng, B. C., Ng, K. W. & Loo, J. S.-C. Cellular uptake of poly-(D,L-lactide-co-glycolide) (PLGA) nanoparticles synthesized through solvent emulsion evaporation and nanoprecipitation method. Biotechnol. J. 6, 501–508 (2011).
pubmed: 21259442 doi: 10.1002/biot.201000351
Zeng, J., Martin, A., Han, X., Shirihai, O. S. & Grinstaff, M. W. M. W. Biodegradable PLGA nanoparticles restore lysosomal acidity and protect neural PC-12 cells against mitochondrial toxicity. Ind. Eng. Chem. Res. 58, 13910–13917 (2019).
doi: 10.1021/acs.iecr.9b02003
Zeng, J., Shirihai, O. S. & Grinstaff, M. W. Degradable nanoparticles restore lysosomal pH and autophagic flux in lipotoxic pancreatic beta cells. Adv. Healthc. Mater. 8, https://doi.org/10.1002/adhm.201801511 (2019).
Arotcarena, M.-L. et al. Acidic nanoparticles protect against α-synuclein-induced neurodegeneration through the restoration of lysosomal function. Aging Cell 21, e13584 (2022).
pubmed: 35318803 pmcid: 9009122 doi: 10.1111/acel.13584
Fiel, L. A. et al. Labeling the oily core of nanocapsules and lipid-core nanocapsules with a triglyceride conjugated to a fluorescent dye as a strategy to particle tracking in biological studies. Nanoscale Res. Lett. 9, 233 (2014).
pubmed: 24936156 pmcid: 4045892 doi: 10.1186/1556-276X-9-233
Koga, H., Kaushik, S. & Cuervo, A. M. Inhibitory effect of intracellular lipid load on macroautophagy. Autophagy 6, 825–827 (2010).
pubmed: 20647740 doi: 10.4161/auto.6.6.12752
Rodriguez-Navarro, J. A. et al. Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA 109, E705 LP–E705714 (2012).
doi: 10.1073/pnas.1113036109
Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).
pubmed: 19339967 pmcid: 2676208 doi: 10.1038/nature07976
Pettersson, U. S., Waldén, T. B., Carlsson, P.-O., Jansson, L. & Phillipson, M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS ONE 7, e46057 (2012).
pubmed: 23049932 pmcid: 3458106 doi: 10.1371/journal.pone.0046057
Takahashi, Y. & Fukusato, T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 20, 15539–15548 (2014).
pubmed: 25400438 pmcid: 4229519 doi: 10.3748/wjg.v20.i42.15539

Auteurs

Jialiu Zeng (J)

Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. jialiu.zeng@ntu.edu.sg.
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore, Singapore. jialiu.zeng@ntu.edu.sg.

Rebeca Acin-Perez (R)

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90045, USA.

Essam A Assali (EA)

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90045, USA.

Andrew Martin (A)

Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.

Alexandra J Brownstein (AJ)

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90045, USA.

Anton Petcherski (A)

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90045, USA.

Lucía Fernández-Del-Rio (L)

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90045, USA.

Ruiqing Xiao (R)

Department of Chemistry, Boston University, Boston, MA, 02215, USA.
Shenzhen Middle School, Shenzhen, Guangdong, 518001, China.

Chih Hung Lo (CH)

Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore, Singapore.

Michaël Shum (M)

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90045, USA.
Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.

Marc Liesa (M)

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90045, USA.
Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
Molecular Biology Institute at University of California, Los Angeles, Los Angeles, CA, 90095, USA.
Institut de Biologia Molecular de Barcelona, IBMB, CSIC, Barcelona, Catalonia, 08028, Spain.

Xue Han (X)

Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.

Orian S Shirihai (OS)

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90045, USA. OShirihai@mednet.ucla.edu.
Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA. OShirihai@mednet.ucla.edu.
Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA. OShirihai@mednet.ucla.edu.

Mark W Grinstaff (MW)

Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. mgrin@bu.edu.
Department of Chemistry, Boston University, Boston, MA, 02215, USA. mgrin@bu.edu.
Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA. mgrin@bu.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH