Metataxonomic characterization of the microbial community involved in the production of biogas with microcrystalline cellulose in pilot and laboratory scale.
16S rRNA metabarcoding
Anaerobic digestion
Biogas plant
Customs confiscation residues
Functional analysis
Journal
World journal of microbiology & biotechnology
ISSN: 1573-0972
Titre abrégé: World J Microbiol Biotechnol
Pays: Germany
ID NLM: 9012472
Informations de publication
Date de publication:
06 May 2023
06 May 2023
Historique:
received:
13
12
2022
accepted:
08
03
2023
medline:
8
5
2023
pubmed:
6
5
2023
entrez:
5
5
2023
Statut:
epublish
Résumé
Biogas, produced in anaerobic digestion, is a sustainable alternative for generating energy from agro-industrial and municipal waste. Information from the microbiota active in the process expands the possibilities for technological innovation. In this study, taxonomic annotations, and functional prediction of the microbial community of the inoculum of two processes were carried out: an industrial unit (pilot-scale urban solid waste plant-IU) and a laboratory-scale reactor fed with swine and cattle waste (LS). The biochemical potential of biogas was obtained using tested inoculum with microcrystalline cellulose, obtaining 682 LN/kgVS (LSC-laboratory scale inoculum and microcrystalline cellulose), and 583 LN/kgVS (IUC-industrial unit inoculum and microcrystalline cellulose), which is equivalent to a recovery of 91.5% of total biogas to LSC. The phyla Synergistota and Firmicutes were more abundant in LS/LSC. In the IU/IUC (treatment of restaurant waste and customs seizures), there was a greater microbiological variety and a predominance of the Bacteroidota, Cloacimonadota, Firmicutes and Caldatribacteriota. The genus Methanosaeta predominated in the process, and it was possible to infer the genes (K01895, K00193 and K00625) related to acetoclastic pathway, as well as endoglucanases that are involved in the metabolism of cellulose (LSC). Terpenoids, polyketides, cofactors, and vitamin metabolism were higher in reactors that received different substrates (IU; IUC). The taxonomic and functional differences revealed the importance of determining the microbiota in the analysis of the potential of an inoculum, combined with the use of microcrystalline cellulose, which can provide optimization information in the production of clean energy.
Identifiants
pubmed: 37147463
doi: 10.1007/s11274-023-03573-9
pii: 10.1007/s11274-023-03573-9
doi:
Substances chimiques
Biofuels
0
microcrystalline cellulose
OP1R32D61U
Cellulose
9004-34-6
Methane
OP0UW79H66
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
184Subventions
Organisme : Priority Latin America and the Caribbean
ID : EDITAL 105/2020/PRPPG
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Amin FR, Khalid H, El-Mashad HM et al (2021) Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143007
doi: 10.1016/j.scitotenv.2020.143007
pubmed: 34718001
pmcid: 8379898
Andrews S, Lindenbaum P, Howard B, Ewels P (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/
APHA, AWWA, WEF (2017) Standard Methods for the Examination of Water and Wastewater. Washington, DC.
Bedoya K, Hoyos O, Zurek E et al (2020) Annual microbial community dynamics in a full-scale anaerobic sludge digester from a wastewater treatment plant in Colombia. Sci Total Environ 726:138479. https://doi.org/10.1016/j.scitotenv.2020.138479
doi: 10.1016/j.scitotenv.2020.138479
pubmed: 32305756
Bolyen E, Rideout JR, Dillon MR, Bokulich NA et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9
doi: 10.1038/s41587-019-0209-9
pubmed: 31341288
pmcid: 7015180
Bonugli-Santos RC, Marteres TJ, Luiz FN et al (2022) Prolonged acetogenic phase and biological succession during anaerobic digestion using swine manure. Folia Microbiol (praha). https://doi.org/10.1007/s12223-021-00937-2
doi: 10.1007/s12223-021-00937-2
pubmed: 35460047
Brasil 2021 Ministério de Minas e Energia. Conselho nacional de política energética - CNPE. Resoluçãoo n° 7, de 20 de abril de 2021. https://www.in.gov.br/en/web/dou/-/despacho-do-presidente-da-republica-320067170
Calabrò PS, Fazzino F, Pangallo D (2021) How does separate collection efficiency influence biological stability of commingled Italian municipal solid waste? Sustain Chem Pharm. https://doi.org/10.1016/j.scp.2020.100355
doi: 10.1016/j.scp.2020.100355
Calderon AG, Duan H, Chen X et al (2021) Enhancing anaerobic digestion using free nitrous acid: Identifying the optimal pre-treatment condition in continuous operation. Water Res 205:117694. https://doi.org/10.1016/j.watres.2021.117694
doi: 10.1016/j.watres.2021.117694
pubmed: 34607085
Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869
doi: 10.1038/nmeth.3869
pubmed: 27214047
pmcid: 4927377
Camargo FP, Sakamoto IK, Duarte ICS et al (2021) Metataxonomic characterization of bacterial and archaeal community involved in hydrogen and methane production from citrus peel waste (Citrus sinensis L. Osbeck) in batch reactors. Biomass and Bioenergy. https://doi.org/10.1016/j.biombioe.2021.106091
doi: 10.1016/j.biombioe.2021.106091
Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8
doi: 10.1038/ismej.2012.8
pubmed: 22402401
pmcid: 3400413
Chang Bejarano A, Champagne P (2022) Optimization of biogas production during start-up with electrode-assisted anaerobic digestion. Chemosphere 302:134739. https://doi.org/10.1016/j.chemosphere.2022.134739
doi: 10.1016/j.chemosphere.2022.134739
pubmed: 35489453
Chen L, Meng X, Zhou G et al (2022) Effects of organic loading rates on the anaerobic co-digestion of fresh vinegar residue and pig manure: Focus on the performance and microbial communities. Biochem Eng J 183:108441. https://doi.org/10.1016/j.bej.2022.108441
doi: 10.1016/j.bej.2022.108441
Chernicharo CAL (2007) Biological wastewater treatment: anaerobic reactors. IWA Publishing, London
Christou ML, Vasileiadis S, Kalamaras SD et al (2021) Ammonia-induced inhibition of manure-based continuous biomethanation process under different organic loading rates and associated microbial community dynamics. Bioresour Technol 320:124323. https://doi.org/10.1016/j.biortech.2020.124323
doi: 10.1016/j.biortech.2020.124323
pubmed: 33157441
CIBiogas 2021 Panorama do Biogás no Brasil 2021. Foz do Iguaçu.
Douglas GM, Maffei VJ, Zaneveld JR et al (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6
doi: 10.1038/s41587-020-0548-6
pubmed: 32483366
pmcid: 7365738
Gadaleta G, De Gisi S, Picuno C et al (2022) Energy recovery options for the management of cellulose-based bio-plastics and mixed municipal solid waste. Biomass and Bioenergy 166:106628. https://doi.org/10.1016/j.biombioe.2022.106628
doi: 10.1016/j.biombioe.2022.106628
Gallardo-Altamirano MJ, Maza-Márquez P, Montemurro N et al (2021) Insights into the removal of pharmaceutically active compounds from sewage sludge by two-stage mesophilic anaerobic digestion. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.147869
doi: 10.1016/j.scitotenv.2021.147869
pubmed: 34051504
Hahnke S, Langer T, Koeck DE, Klocke M (2016) Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum. Int J Syst Evol Microbiol 66:1466–1475. https://doi.org/10.1099/ijsem.0.000902
doi: 10.1099/ijsem.0.000902
pubmed: 26782749
Hammer Ø, Harper DAT, Ryan PD (2009) PAST–palaeontological statistics. Palaeontol Electron 4:1–9
Hu F, Zhang S, Wang X et al (2022) Investigating the role of different materials supplementation in anaerobic digestion of kitchen waste: performance and microbial community dynamics. Biochem Eng J 184:108490. https://doi.org/10.1016/j.bej.2022.108490
doi: 10.1016/j.bej.2022.108490
Iltchenco J, Peruzzo V, Magrini FE et al (2021) Microbiota profile in mesophilic biodigestion of sugarcane vinasse in batch reactors. Water Sci Technol 84:2028–2039. https://doi.org/10.2166/wst.2021.375
doi: 10.2166/wst.2021.375
pubmed: 34695028
Ji Y, Liu P, Conrad R (2018) Response of fermenting bacterial and methanogenic archaeal communities in paddy soil to progressing rice straw degradation. Soil Biol Biochem 124:70–80. https://doi.org/10.1016/j.soilbio.2018.05.029
doi: 10.1016/j.soilbio.2018.05.029
Jiang X, Lyu Q, Bi L et al (2022) Improvement of sewage sludge anaerobic digestion through synergistic effect combined trace elements enhancer with enzyme pretreatment and microbial community response. Chemosphere 286:131356. https://doi.org/10.1016/j.chemosphere.2021.131356
doi: 10.1016/j.chemosphere.2021.131356
pubmed: 34293574
Jurgutis L, Slepetiene A, Volungevicius J, Amaleviciute-Volunge K (2020) Biogas production from chicken manure at different organic loading rates in a mesophilic full scale anaerobic digestion plant. Biomass and Bioenergy 141:105693. https://doi.org/10.1016/j.biombioe.2020.105693
doi: 10.1016/j.biombioe.2020.105693
Kanehisa M, Sato Y, Kawashima M et al (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:457–462. https://doi.org/10.1093/nar/gkv1070
doi: 10.1093/nar/gkv1070
Koch K, Lippert T, Drewes JE (2017) The role of inoculum’s origin on the methane yield of different substrates in biochemical methane potential (BMP) tests. Bioresour Technol 243:457–463. https://doi.org/10.1016/j.biortech.2017.06.142
doi: 10.1016/j.biortech.2017.06.142
pubmed: 28688329
Kunz A, Steinmetz RLR, Amaral AC (2022) Fundamentos da digestão anaeróbia, purificação do biogás, uso e tratamento do digestato, 2
Kurade MB, Saha S, Salama ES et al (2019) Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresour Technol 272:351–359. https://doi.org/10.1016/j.biortech.2018.10.047
doi: 10.1016/j.biortech.2018.10.047
pubmed: 30384210
Lee J, Koo T, Yulisa A, Hwang S (2019) Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition. J Environ Manage 241:418–426. https://doi.org/10.1016/j.jenvman.2019.04.038
doi: 10.1016/j.jenvman.2019.04.038
pubmed: 31035235
Li C, He P, Hao L et al (2022a) Diverse acetate-oxidizing syntrophs contributing to biogas production from food waste in full-scale anaerobic digesters in China. Renew Energy 193:240–250. https://doi.org/10.1016/j.renene.2022.04.143
doi: 10.1016/j.renene.2022.04.143
Li MT, Rao L, Wang L et al (2022) Bioaugmentation with syntrophic volatile fatty acids-oxidizing consortia to alleviate the ammonia inhibition in continuously anaerobic digestion of municipal sludge. Chemosphere 288:132389. https://doi.org/10.1016/j.chemosphere.2021.132389
doi: 10.1016/j.chemosphere.2021.132389
pubmed: 34606893
Li Y, Chen Z, Peng Y et al (2022) Deeper insights into the effects of substrate to inoculum ratio selection on the relationship of kinetic parameters, microbial communities, and key metabolic pathways during the anaerobic digestion of food waste. Water Res 217:118440. https://doi.org/10.1016/j.watres.2022.118440
doi: 10.1016/j.watres.2022.118440
pubmed: 35429887
Li Y, Jing Z, Pan J et al (2022) Multi-omics joint analysis of the effect of temperature on microbial communities, metabolism, and genetics in full-scale biogas reactors with food waste. Renew Sustain Energy Rev 160:112261. https://doi.org/10.1016/j.rser.2022.112261
doi: 10.1016/j.rser.2022.112261
Lima MA, Mendes LFR, Mothé GA et al (2020) Renewable energy in reducing greenhouse gas emissions: reaching the goals of the Paris agreement in Brazil. Environ Dev 33:100504. https://doi.org/10.1016/j.envdev.2020.100504
doi: 10.1016/j.envdev.2020.100504
Lu J, Jia Z, Wang P et al (2022) Restoration of acidified dry anaerobic digestion of food waste: bioaugmentation of butyric acid-resistant microbes. J Environ Chem Eng 10:106935. https://doi.org/10.1016/j.jece.2021.106935
doi: 10.1016/j.jece.2021.106935
Magrini FE, de Almeida GM, da Maia Soares D et al (2020) Effect of different heat treatments of inoculum on the production of hydrogen and volatile fatty acids by dark fermentation of sugarcane vinasse. Biomass Convers Bioref. https://doi.org/10.1007/s13399-020-00687-0
doi: 10.1007/s13399-020-00687-0
McNally CP, Eng A, Noecker C et al (2018) BURRITO: an interactive multi-omic tool for visualizing taxa-function relationships in microbiome data. Front Microbiol 9:1–11. https://doi.org/10.3389/fmicb.2018.00365
doi: 10.3389/fmicb.2018.00365
Mlaik N, Karray F, Sayadi S et al (2022) Semi-continuous anaerobic digestion of the organic fraction of municipal solid waste: digester performance and microbial population dynamics. J Environ Chem Eng 10:107941. https://doi.org/10.1016/j.jece.2022.107941
doi: 10.1016/j.jece.2022.107941
Müller B, Sun L, Westerholm M, Schnürer A (2016) Bacterial community composition and fhs profiles of low- and high-ammonia biogas digesters reveal novel syntrophic acetate-oxidising bacteria. Biotechnol Biofuels 9:1–18. https://doi.org/10.1186/s13068-016-0454-9
doi: 10.1186/s13068-016-0454-9
Ottoni JR, Bernal SPF, Marteres TJ et al (2022) Cultured and uncultured microbial community associated with biogas production in anaerobic digestion processes. Arch Microbiol 204:1–13. https://doi.org/10.1007/s00203-022-02819-8
doi: 10.1007/s00203-022-02819-8
Paesi S, Schiavenin A, Almeida LG et al (2022) Comparison of two different kinds of seed sludge and characterization of microorganisms producing hydrogen and soluble metabolites from raw glycerol. Brazilian J Chem Eng 39:387–402. https://doi.org/10.1007/s43153-021-00212-4
doi: 10.1007/s43153-021-00212-4
Palomo-Briones R, de Montoya-Rosales J, J, Razo-Flores E, (2021) Advances towards the understanding of microbial communities in dark fermentation of enzymatic hydrolysates: diversity, structure and hydrogen production performance. Int J Hydrogen Energy 46:27459–27472. https://doi.org/10.1016/j.ijhydene.2021.06.016
doi: 10.1016/j.ijhydene.2021.06.016
Pellera FM, Gidarakos E (2016) Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agroindustrial waste. J Environ Chem Eng 4:3217–3229. https://doi.org/10.1016/j.jece.2016.05.026
doi: 10.1016/j.jece.2016.05.026
Perman E, Schnürer A, Björn A, Moestedt J (2022) Serial anaerobic digestion improves protein degradation and biogas production from mixed food waste. Biomass and Bioenergy 161:106478. https://doi.org/10.1016/j.biombioe.2022.106478
doi: 10.1016/j.biombioe.2022.106478
Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596. https://doi.org/10.1093/nar/gks1219
doi: 10.1093/nar/gks1219
Rehman M, Iqbal A, Chang C et al (2019) Anaerobic digestion. Water Environ Res 91:1253–1271
doi: 10.1002/wer.1219
Shamurad B, Sallis P, Petropoulos E et al (2020) Stable biogas production from single-stage anaerobic digestion of food waste. Appl Energy. https://doi.org/10.1016/j.apenergy.2020.114609
doi: 10.1016/j.apenergy.2020.114609
Steinmetz RLR, Mezzari MP, da Silva MLB et al (2016) Enrichment and acclimation of an anaerobic mesophilic microorganism’s inoculum for standardization of BMP assays. Bioresour Technol 219:21–28. https://doi.org/10.1016/j.biortech.2016.07.031
doi: 10.1016/j.biortech.2016.07.031
pubmed: 27474854
Stiborova H, Strejcek M, Musilova L et al (2020) Diversity and phylogenetic composition of bacterial communities and their association with anthropogenic pollutants in sewage sludge. Chemosphere 238:124629. https://doi.org/10.1016/j.chemosphere.2019.124629
doi: 10.1016/j.chemosphere.2019.124629
pubmed: 31524607
Tápparo DC, Cândido D, Steinmetz RLR et al (2021) Swine manure biogas production improvement using pre-treatment strategies: lab-scale studies and full-scale application. Bioresour Technol Rep. https://doi.org/10.1016/j.biteb.2021.100716
doi: 10.1016/j.biteb.2021.100716
Tomazetto G, Hahnke S, Wibberg D et al (2018) Proteiniphilum saccharofermentans str. M3/6T isolated from a laboratory biogas reactor is versatile in polysaccharide and oligopeptide utilization as deduced from genome-based metabolic reconstructions. Biotechnol Rep 18:e00254. https://doi.org/10.1016/j.btre.2018.e00254
doi: 10.1016/j.btre.2018.e00254
Town JR, Dumonceaux TJ (2016) Laboratory-scale bioaugmentation relieves acetate accumulation and stimulates methane production in stalled anaerobic digesters. Appl Microbiol Biotechnol 100:1009–1017. https://doi.org/10.1007/s00253-015-7058-3
doi: 10.1007/s00253-015-7058-3
pubmed: 26481626
Value MF, Value F, Sample I, et al (2021) Determination of FOS/TAC Value in Biogas Reactors. 2014–2015
VDI 4630 (2006) Fermentation of organic materials Characterisation of the substrate, sampling, collection of material data, fermentation tests
Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE. https://doi.org/10.1371/journal.pone.0007401
doi: 10.1371/journal.pone.0007401
pubmed: 20041190
pmcid: 2795171
Wang S, Hou X, Su H (2017) Exploration of the relationship between biogas production and microbial community under high salinity conditions. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-01298-y
doi: 10.1038/s41598-017-01298-y
pubmed: 28127051
pmcid: 5428335
Werner JJ, Knights D, Garcia ML et al (2011) Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci USA 108:4158–4163. https://doi.org/10.1073/pnas.1015676108
doi: 10.1073/pnas.1015676108
pubmed: 21368115
pmcid: 3053989
Westerholm M, Müller B, Singh A et al (2018) Detection of novel syntrophic acetate-oxidizing bacteria from biogas processes by continuous acetate enrichment approaches. Microb Biotechnol 11:680–693. https://doi.org/10.1111/1751-7915.13035
doi: 10.1111/1751-7915.13035
pubmed: 29239113
Xiao B, Tang X, Zhang W et al (2022) Effects of rice straw ratio on mesophilic and thermophilic anaerobic co-digestion of swine manure and rice straw mixture. Energy 239:122021. https://doi.org/10.1016/j.energy.2021.122021
doi: 10.1016/j.energy.2021.122021
Yang S, Chen Z, Wen Q (2021) Impacts of biochar on anaerobic digestion of swine manure: methanogenesis and antibiotic resistance genes dissemination. Bioresour Technol 324:124679. https://doi.org/10.1016/j.biortech.2021.124679
doi: 10.1016/j.biortech.2021.124679
pubmed: 33445009
Yang S, Xue W, Liu P et al (2022) Revealing the methanogenic pathways for anaerobic digestion of key components in food waste: performance, microbial community, and implications. Bioresour Technol 347:126340. https://doi.org/10.1016/j.biortech.2021.126340
doi: 10.1016/j.biortech.2021.126340
pubmed: 34780907
Yong TW, Sharma P, Tian H et al (2023) Startup performance and microbial communities of a decentralized anaerobic digestion of food waste. Chemosphere. https://doi.org/10.1016/j.chemosphere.2023.137937
doi: 10.1016/j.chemosphere.2023.137937
pubmed: 36925003
Zhan Y, Cao X, Xiao Y et al (2022) Start-up of co-digestion of poultry litter and wheat straw in anaerobic sequencing batch reactor by gradually increasing organic loading rate: methane production and microbial community analysis. Bioresour Technol 354:127232. https://doi.org/10.1016/j.biortech.2022.127232
doi: 10.1016/j.biortech.2022.127232
pubmed: 35483532
Zhang W, Wang X, Xing W et al (2021) Links between synergistic effects and microbial community characteristics of anaerobic co-digestion of food waste, cattle manure and corn straw. Bioresour Technol 329:124919. https://doi.org/10.1016/j.biortech.2021.124919
doi: 10.1016/j.biortech.2021.124919
pubmed: 33676353
Zhang Y, Zhang L, Yu N et al (2022) Enhancing the resistance to H2S toxicity during anaerobic digestion of low-strength wastewater through granular activated carbon (GAC) addition. J Hazard Mater 430:128473. https://doi.org/10.1016/j.jhazmat.2022.128473
doi: 10.1016/j.jhazmat.2022.128473
pubmed: 35739662
Zhu K, Zhang L, Wang X et al (2021) Inhibition of norfloxacin on anaerobic digestion: focusing on the recoverability and shifted microbial communities. Sci Total Environ 752:141733. https://doi.org/10.1016/j.scitotenv.2020.141733
doi: 10.1016/j.scitotenv.2020.141733
pubmed: 32896787
Zhu R, Wang DH, Zheng Y et al (2022) Understanding the mechanisms behind micro-aeration to enhance anaerobic digestion of corn straw. Fuel. https://doi.org/10.1016/j.fuel.2022.123604
doi: 10.1016/j.fuel.2022.123604
Zhuravleva EA, Shekhurdina SV, Kotova IB et al (2022) Effects of various materials used to promote the direct interspecies electron transfer on anaerobic digestion of low-concentration swine manure. Sci Total Environ 839:156073. https://doi.org/10.1016/j.scitotenv.2022.156073
doi: 10.1016/j.scitotenv.2022.156073
pubmed: 35618137
Ziels RM, Beck DAC, Stensel HD (2017) Long-chain fatty acid feeding frequency in anaerobic codigestion impacts syntrophic community structure and biokinetics. Water Res 117:218–229. https://doi.org/10.1016/j.watres.2017.03.060
doi: 10.1016/j.watres.2017.03.060
pubmed: 28402870