Large-Scale Preparation of Carboxylated Cellulose Nanocrystals and Their Application for Stabilizing Pickering Emulsions.
Journal
ACS omega
ISSN: 2470-1343
Titre abrégé: ACS Omega
Pays: United States
ID NLM: 101691658
Informations de publication
Date de publication:
02 May 2023
02 May 2023
Historique:
received:
28
12
2022
accepted:
06
04
2023
medline:
8
5
2023
pubmed:
8
5
2023
entrez:
8
5
2023
Statut:
epublish
Résumé
Cellulose nanocrystals (CNCs) with varied unique properties have been widely used in emulsions, nanocomposites, and membranes. However, conventional CNCs for industrial use were usually prepared through acid hydrolysis or heat-controlled methods with sulfuric acid. This most commonly used acid method generally suffers from low yields, poor thermal stability, and potential environmental pollution. Herein, we developed a high-efficiency and large-scale preparation strategy to produce carboxylated cellulose nanocrystals (Car-CNCs) via carboxymethylation-enhanced ammonium persulfate (APS) oxidation. After carboxymethylation, the wood fibers could form unique "balloon-like" structures with abundant exposed hydroxy groups, which facilitated exfoliating fibril bundles into individual nanocrystals during the APS oxidation process. The production process under controlled temperature, time period, and APS concentrations was optimized and the resultant Car-CNCs exhibited a typical structure with narrow diameter distributions. In particular, the final Car-CNCs exhibited excellent thermal stability (≈346.6 °C) and reached a maximum yield of 60.6%, superior to that of sulfated cellulose nanocrystals (Sul-CNCs) prepared by conventional acid hydrolysis. More importantly, compared to the common APS oxidation, our two-step collaborative process shortened the oxidation time from more than 16 h to only 30 min. Therefore, our high-efficiency method may pave the way for the up-scaled production of carboxylated nanocrystals. More importantly, Car-CNCs show potential for stabilizing Pickering emulsions that can withstand changeable environments, including heating, storage, and centrifugation, which is better than the conventional Sul-CNC-based emulsions.
Identifiants
pubmed: 37151532
doi: 10.1021/acsomega.2c08239
pmc: PMC10157680
doi:
Types de publication
Journal Article
Langues
eng
Pagination
15114-15123Informations de copyright
© 2023 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Chem Soc Rev. 2018 Apr 23;47(8):2609-2679
pubmed: 29658545
Carbohydr Polym. 2020 Dec 1;249:116835
pubmed: 32933679
Adv Mater. 2022 Mar;34(10):e2107857
pubmed: 34964189
Nanoscale. 2012 Jun 7;4(11):3274-94
pubmed: 22565323
Carbohydr Polym. 2017 Oct 15;174:484-492
pubmed: 28821096
J Colloid Interface Sci. 2019 Nov 1;555:489-497
pubmed: 31401481
ACS Appl Mater Interfaces. 2009 Jul;1(7):1383-6
pubmed: 20355939
Biomacromolecules. 2012 Jan 9;13(1):267-75
pubmed: 22126590
Int J Biol Macromol. 2018 Jan;106:1023-1031
pubmed: 28842201
Carbohydr Polym. 2016 Mar 15;138:237-43
pubmed: 26794758
Angew Chem Int Ed Engl. 2022 Mar 1;61(10):e202115238
pubmed: 34936181
Carbohydr Polym. 2013 Jun 5;95(1):32-40
pubmed: 23618236
Carbohydr Polym. 2017 Feb 10;157:1041-1049
pubmed: 27987804
Int J Biol Macromol. 2022 Dec 1;222(Pt A):438-447
pubmed: 36162530
Small. 2011 Feb 7;7(3):302-5
pubmed: 21294255
ACS Omega. 2021 Dec 01;6(49):34107-34114
pubmed: 34926958
Carbohydr Polym. 2021 Mar 1;255:117483
pubmed: 33436243
Biomacromolecules. 2014 Aug 11;15(8):3052-60
pubmed: 24983405
Langmuir. 2012 May 22;28(20):7834-42
pubmed: 22482733
Langmuir. 2011 Jun 21;27(12):7471-9
pubmed: 21604688
Small. 2020 Apr;16(13):e1906567
pubmed: 32049432
Carbohydr Polym. 2020 Feb 1;229:115539
pubmed: 31826480
Langmuir. 2014 Aug 12;30(31):9327-35
pubmed: 25046221
Nanoscale. 2016 Jan 14;8(2):973-8
pubmed: 26661341
Biomacromolecules. 2006 Jun;7(6):1687-91
pubmed: 16768384
Carbohydr Polym. 2021 Oct 1;269:118339
pubmed: 34294348
Research (Wash D C). 2022 Jun 2;2022:9814767
pubmed: 35711672
Carbohydr Polym. 2015;127:101-9
pubmed: 25965462
Nanomicro Lett. 2022 Apr 13;14(1):104
pubmed: 35416525
Polymers (Basel). 2021 Jun 07;13(11):
pubmed: 34200423
Langmuir. 2008 Feb 5;24(3):784-95
pubmed: 18186655
Nanomaterials (Basel). 2018 Aug 21;8(9):
pubmed: 30134631
Carbohydr Polym. 2023 Jan 1;299:120154
pubmed: 36880908
ACS Appl Mater Interfaces. 2013 Apr 24;5(8):2999-3009
pubmed: 23521616
Carbohydr Polym. 2020 Aug 15;242:116366
pubmed: 32564838
Chem Rev. 2016 Aug 24;116(16):9305-74
pubmed: 27459699
Int J Biol Macromol. 2019 Nov 1;140:225-233
pubmed: 31437495
Food Res Int. 2020 Feb;128:108746
pubmed: 31955785
Carbohydr Polym. 2020 Jun 15;238:116180
pubmed: 32299561
Carbohydr Polym. 2021 Jan 1;251:117029
pubmed: 33142588
Nanoscale. 2011 Jan;3(1):71-85
pubmed: 20957280
Carbohydr Polym. 2020 Feb 1;229:115572
pubmed: 31826514