GUN4 appeared early in cyanobacterial evolution.
ChlH
Gloeobacterales
Thermostichales
Journal
PNAS nexus
ISSN: 2752-6542
Titre abrégé: PNAS Nexus
Pays: England
ID NLM: 9918367777906676
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
received:
12
01
2023
revised:
15
03
2023
accepted:
06
04
2023
medline:
8
5
2023
pubmed:
8
5
2023
entrez:
8
5
2023
Statut:
epublish
Résumé
Photosynthesis relies on chlorophylls, which are synthesized via a common tetrapyrrole trunk pathway also leading to heme, vitamin B12, and other pigmented cofactors. The first committed step for chlorophyll biosynthesis is insertion of magnesium into protoporphyrin IX by magnesium chelatase. Magnesium chelatase is composed of H-, I-, and D-subunits, with the tetrapyrrole substrate binding to the H-subunit. This subunit is rapidly inactivated in the presence of substrate, light, and oxygen, so oxygenic photosynthetic organisms require mechanisms to protect magnesium chelatase from similar loss of function. An additional protein, GUN4, binds to the H-subunit and to tetrapyrroles. GUN4 has been proposed to serve this protective role via its ability to bind linear tetrapyrroles (bilins). In the current work, we probe the origins of bilin binding by GUN4 via comparative phylogenetic analysis and biochemical validation of a conserved bilin-binding motif. Based on our results, we propose that bilin-binding GUN4 proteins arose early in cyanobacterial evolution and that this early acquisition represents an ancient adaptation for maintaining chlorophyll biosynthesis in the presence of light and oxygen.
Identifiants
pubmed: 37152672
doi: 10.1093/pnasnexus/pgad131
pii: pgad131
pmc: PMC10156173
doi:
Types de publication
Journal Article
Langues
eng
Pagination
pgad131Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences.
Références
Microbes Environ. 2021;36(2):
pubmed: 33952861
Biochemistry. 2010 Jul 27;49(29):6206-18
pubmed: 20557110
Biochim Biophys Acta. 2012 Aug;1817(8):1428-35
pubmed: 22172737
Syst Biol. 2012 May;61(3):539-42
pubmed: 22357727
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
pubmed: 9254694
Mol Plant. 2019 May 6;12(5):715-725
pubmed: 30818037
Microbiol Resour Announc. 2022 Aug 18;11(8):e0029422
pubmed: 35876539
J Plant Physiol. 2017 Oct;217:57-67
pubmed: 28641882
Science. 2003 Feb 7;299(5608):902-6
pubmed: 12574634
Proc Biol Sci. 2021 Sep 29;288(1959):20210675
pubmed: 34583585
FEBS Lett. 2004 Jul 30;571(1-3):119-23
pubmed: 15280028
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3621-6
pubmed: 23345435
Front Microbiol. 2019 Feb 22;10:277
pubmed: 30853950
J Biol Chem. 2008 Sep 19;283(38):25794-802
pubmed: 18625715
DNA Res. 1996 Jun 30;3(3):109-36
pubmed: 8905231
Bioinformatics. 2007 Nov 1;23(21):2947-8
pubmed: 17846036
ISME J. 2021 Jan;15(1):211-227
pubmed: 32943748
Trends Plant Sci. 2010 Sep;15(9):488-98
pubmed: 20598625
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6123-7
pubmed: 19339496
Mikrobiologiia. 2008 May-Jun;77(3):413-20
pubmed: 18683660
ISME J. 2007 Dec;1(8):703-13
pubmed: 18059494
J Phycol. 2023 Feb;59(1):12-51
pubmed: 36443823
Science. 2017 Mar 31;355(6332):1436-1440
pubmed: 28360330
Front Microbiol. 2019 Jul 12;10:1612
pubmed: 31354692
Eukaryot Cell. 2014 Feb;13(2):246-55
pubmed: 24297445
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1053-8
pubmed: 23277585
Environ Microbiol Rep. 2021 Apr;13(2):126-137
pubmed: 33369160
Curr Biol. 2017 Feb 6;27(3):386-391
pubmed: 28132810
Proc Natl Acad Sci U S A. 2021 May 18;118(20):
pubmed: 33975960
Sci Rep. 2022 Feb 18;12(1):2850
pubmed: 35181739
J Bacteriol. 2011 Apr;193(7):1663-71
pubmed: 21296968
Mol Biol Evol. 2004 May;21(5):809-18
pubmed: 14963099
New Phytol. 2017 May;214(3):1145-1157
pubmed: 28106912
Chem Rev. 2002 Dec;102(12):4525-48
pubmed: 12475200
J Mol Biol. 1996 Jul 19;260(3):289-98
pubmed: 8757792
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1791-6
pubmed: 23319632
Curr Protein Pept Sci. 2014;15(4):332-50
pubmed: 24678668
FEBS Lett. 2006 Feb 20;580(5):1333-8
pubmed: 16458890
J Biol Chem. 2011 Jun 10;286(23):20313-22
pubmed: 21502322
DNA Res. 2003 Aug 31;10(4):137-45
pubmed: 14621292
Microbiol Resour Announc. 2022 May 19;11(5):e0025122
pubmed: 35438510
Plant Mol Biol. 1998 Jun;37(3):577-80
pubmed: 9617824
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12355-60
pubmed: 23776247
Bioessays. 2011 Sep;33(9):683-92
pubmed: 21744372
Plant Cell. 2011 Apr;23(4):1449-67
pubmed: 21467578
Methods Mol Biol. 2014;1079:131-46
pubmed: 24170399
Photosynth Res. 1996 May;48(1-2):163-70
pubmed: 24271296
Curr Biol. 2021 Jul 12;31(13):2857-2867.e4
pubmed: 33989529
Nature. 2017 Nov 2;551(7678):57-63
pubmed: 29045394
Nature. 2019 Aug;572(7768):240-243
pubmed: 31316212
ISME J. 2020 Aug;14(8):2142-2152
pubmed: 32424249
Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):E7737-E7745
pubmed: 28808007
Protein Sci. 2021 Oct;30(10):2083-2091
pubmed: 34382282
PLoS One. 2013 Oct 23;8(10):e76376
pubmed: 24194836
Sci Rep. 2016 Feb 03;6:20557
pubmed: 26838605
mSphere. 2021 Aug 25;6(4):e0006121
pubmed: 34287010
J Gen Appl Microbiol. 2001 Aug;47(4):161-180
pubmed: 12483616
Microbiol Resour Announc. 2021 Jun 3;10(22):e0025821
pubmed: 34080906
Phys Chem Chem Phys. 2020 Mar 21;22(11):6457-6467
pubmed: 32152610
PLoS One. 2013 Jun 18;8(6):e66323
pubmed: 23823729
Proc Biol Sci. 2016 Jan 27;283(1823):
pubmed: 26817772
Plant Physiol. 1987;84:25-30
pubmed: 11539679
Genome Biol Evol. 2021 Dec 1;13(12):
pubmed: 34850891
Mol Microbiol. 2015 Dec;98(6):1021-36
pubmed: 26331359
J Bacteriol. 2003 Jun;185(11):3249-58
pubmed: 12754222
Front Genet. 2020 Nov 05;11:568223
pubmed: 33250920
Syst Biol. 2010 May;59(3):307-21
pubmed: 20525638
Mol Biol Evol. 2016 Sep;33(9):2376-90
pubmed: 27297471
J Mol Biol. 2001 Aug 3;311(1):111-22
pubmed: 11469861
Nature. 2018 Apr;556(7702):452-456
pubmed: 29670290