ACT-107, a novel variant of AmpC β-lactamase from Enterobacter huaxiensis isolated from Neotropical leaf frog (Phyllomedusa distincta) inhabiting the Brazilian Atlantic Forest.
AmpC β-lactamase
Antimicrobial resistance
Brazilian Atlantic Forest
Enterobacter Spp.
Genomic surveillance
Journal
Journal of global antimicrobial resistance
ISSN: 2213-7173
Titre abrégé: J Glob Antimicrob Resist
Pays: Netherlands
ID NLM: 101622459
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
received:
08
10
2022
revised:
12
04
2023
accepted:
24
04
2023
medline:
20
6
2023
pubmed:
9
5
2023
entrez:
8
5
2023
Statut:
ppublish
Résumé
The aim of this study was to characterise a broad-spectrum cephalosporin-resistant AmpC-positive Enterobacter huaxiensis colonising the skin of a Neotropical frog (Phyllomedusa distincta) inhabiting the Brazilian Atlantic Forest. During a genomic surveillance study of antimicrobial resistance, we screened skin samples from P. distincta. Gram-negative bacteria growing on MacConkey agar plates supplemented with 2 µg/mL ceftriaxone were identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. A cephalosporin-resistant E. huaxiensis was sequenced using the Illumina NextSeq platform. Genomic data were analysed using bioinformatics tools, whereas AmpC β-lactamase was characterised in depth by comparative analysis of amino acids, in silico modelling, and analysis of susceptibility to β-lactam antibiotics and combinations of β-lactamase inhibitors. Whole-genome sequencing analysis revealed a novel variant of AmpC β-lactamase belonging to the ACT family, designated ACT-107 by NCBI. This variant contains 12 novel amino acid mutations within the ACT family, 5 in the signal peptide sequence (Ile2, Met14, Tyr16, Gly18 and Thr20), and 7 in the mature protein (Gln22, His43, Cys60, Thr157, Glu225, Ala252 and Asn310). In silico modelling showed that substitutions occurring in the mature chain are localised in the solvent-accessible surface of the protein, where they are not expected to affect the β-lactamase activity, as observed in the resistance profile. Strikingly, 'not designated' ACT variants from E. huaxiensis were clustered (> 96% identity) with ACT-107. Since E. huaxiensis has been isolated from human infection, ACT-107 requires surveillance and the attention of clinicians.
Identifiants
pubmed: 37156419
pii: S2213-7165(23)00073-5
doi: 10.1016/j.jgar.2023.04.016
pmc: PMC10275763
pii:
doi:
Substances chimiques
AmpC beta-lactamases
EC 3.5.2.6
beta-Lactamases
EC 3.5.2.6
Cephalosporins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
353-359Informations de copyright
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.
Déclaration de conflit d'intérêts
Competing interests None declared.
Références
Int J Syst Evol Microbiol. 2019 Mar;69(3):708-714
pubmed: 30614784
Nat Commun. 2018 Nov 30;9(1):5114
pubmed: 30504855
J Clin Microbiol. 2019 Feb 27;57(3):
pubmed: 30381421
Nucleic Acids Res. 2020 Jan 8;48(D1):D517-D525
pubmed: 31665441
Clin Microbiol Infect. 2017 Jan;23(1):2-22
pubmed: 27890457
PLoS Comput Biol. 2017 Jun 8;13(6):e1005595
pubmed: 28594827
Curr Protein Pept Sci. 2017;19(2):130-144
pubmed: 28745223
Clin Microbiol Rev. 2009 Jan;22(1):161-82, Table of Contents
pubmed: 19136439
Antimicrob Agents Chemother. 2015 Dec;59(12):7753-61
pubmed: 26438498
Antimicrob Agents Chemother. 2021 Nov 17;65(12):e0159621
pubmed: 34516244
J Chem Ecol. 2016 Feb;42(2):139-48
pubmed: 26826104
Microb Drug Resist. 2021 May;27(5):585-589
pubmed: 32991273
J Clin Microbiol. 2005 Dec;43(12):5945-9
pubmed: 16333080
Antimicrob Agents Chemother. 2021 Jun 17;65(7):e0242420
pubmed: 33903106
Methods Mol Biol. 2018;1685:43-67
pubmed: 29086303
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4
pubmed: 24753421
Bioinformatics. 2012 Dec 1;28(23):3150-2
pubmed: 23060610
Sci Rep. 2017 Feb 24;7:43232
pubmed: 28233789
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549
pubmed: 29722887
Antimicrob Agents Chemother. 1997 Mar;41(3):563-9
pubmed: 9055993
J Enzyme Inhib Med Chem. 2017 Dec;32(1):917-919
pubmed: 28719998
Nat Methods. 2022 Jun;19(6):679-682
pubmed: 35637307
Nucleic Acids Res. 2022 Jul 5;50(W1):W276-W279
pubmed: 35412617
Nat Biotechnol. 2022 Jul;40(7):1023-1025
pubmed: 34980915
BMC Microbiol. 2019 Jul 30;19(1):174
pubmed: 31362706
Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296
pubmed: 33885785
Protein Sci. 2021 Jan;30(1):70-82
pubmed: 32881101
J Antimicrob Chemother. 2020 Dec 1;75(12):3491-3500
pubmed: 32780112
Clin Microbiol Rev. 2019 Jul 17;32(4):
pubmed: 31315895
Infection. 2019 Jun;47(3):363-375
pubmed: 30840201
J Med Microbiol. 2012 Jan;61(Pt 1):94-100
pubmed: 21873382
Protein Eng. 1995 Feb;8(2):127-34
pubmed: 7630882
J Clin Microbiol. 2005 Jun;43(6):2551-8
pubmed: 15956362
Biochemistry. 2001 Aug 7;40(31):9207-14
pubmed: 11478888
Bioinformatics. 2014 Jul 15;30(14):2068-9
pubmed: 24642063
Cold Spring Harb Perspect Med. 2016 Aug 01;6(8):
pubmed: 27329032