Comparing genomic and epigenomic features across species using the WashU Comparative Epigenome Browser.


Journal

Genome research
ISSN: 1549-5469
Titre abrégé: Genome Res
Pays: United States
ID NLM: 9518021

Informations de publication

Date de publication:
May 2023
Historique:
received: 29 11 2022
accepted: 03 05 2023
medline: 19 6 2023
pubmed: 9 5 2023
entrez: 8 5 2023
Statut: ppublish

Résumé

Genome browsers have become an intuitive and critical tool to visualize and analyze genomic features and data. Conventional genome browsers display data/annotations on a single reference genome/assembly; there are also genomic alignment viewer/browsers that help users visualize alignment, mismatch, and rearrangement between syntenic regions. However, there is a growing need for a comparative epigenome browser that can display genomic and epigenomic data sets across different species and enable users to compare them between syntenic regions. Here, we present the WashU Comparative Epigenome Browser. It allows users to load functional genomic data sets/annotations mapped to different genomes and display them over syntenic regions simultaneously. The browser also displays genetic differences between the genomes from single-nucleotide variants (SNVs) to structural variants (SVs) to visualize the association between epigenomic differences and genetic differences. Instead of anchoring all data sets to the reference genome coordinates, it creates independent coordinates of different genome assemblies to faithfully present features and data mapped to different genomes. It uses a simple, intuitive genome-align track to illustrate the syntenic relationship between different species. It extends the widely used WashU Epigenome Browser infrastructure and can be expanded to support multiple species. This new browser function will greatly facilitate comparative genomic/epigenomic research, as well as support the recent growing needs to directly compare and benchmark the T2T CHM13 assembly and other human genome assemblies.

Identifiants

pubmed: 37156621
pii: gr.277550.122
doi: 10.1101/gr.277550.122
pmc: PMC10317122
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

824-835

Subventions

Organisme : NHGRI NIH HHS
ID : U01 HG009391
Pays : United States
Organisme : NHGRI NIH HHS
ID : U41 HG010972
Pays : United States
Organisme : NHGRI NIH HHS
ID : UM1 HG011585
Pays : United States
Organisme : NIMH NIH HHS
ID : UM1 MH130994
Pays : United States
Organisme : NHGRI NIH HHS
ID : U24 HG012070
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG007175
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA200060
Pays : United States
Organisme : NHGRI NIH HHS
ID : T32 HG000045
Pays : United States

Informations de copyright

© 2023 Zhuo et al.; Published by Cold Spring Harbor Laboratory Press.

Références

Genome Res. 2020 Dec 10;:
pubmed: 33303495
Nat Biotechnol. 2023 May 10;:
pubmed: 37165083
Bioinformatics. 2021 Dec 7;37(23):4572-4574
pubmed: 34623391
Bioinformatics. 2010 Sep 15;26(18):2334-5
pubmed: 20624783
Genome Res. 2011 Mar;21(3):487-93
pubmed: 21209072
Nature. 2015 Feb 19;518(7539):317-30
pubmed: 25693563
Front Genet. 2016 Jun 17;7:110
pubmed: 27379160
Bioinformatics. 2014 Dec 1;30(23):3293-301
pubmed: 25138168
Science. 2021 Apr 2;372(6537):
pubmed: 33632895
BMC Biol. 2020 Jul 6;18(1):85
pubmed: 32631327
Annu Rev Anim Biosci. 2018 Feb 15;6:23-46
pubmed: 29166127
Bioinformatics. 2016 Aug 15;32(16):2508-10
pubmed: 27153597
Bioinformatics. 2014 Aug 1;30(15):2206-7
pubmed: 24728854
Cell Syst. 2019 Jun 26;8(6):494-505.e14
pubmed: 31229558
Nat Biotechnol. 2018 Mar 6;36(3):225-227
pubmed: 29509741
Science. 2022 Apr;376(6588):eabj5089
pubmed: 35357915
Nature. 2017 Sep 13;549(7671):219-226
pubmed: 28905911
Bioinformatics. 2013 May 1;29(9):1223-5
pubmed: 23543396
Genome Res. 2013 Jul;23(7):1063-8
pubmed: 23817047
Nucleic Acids Res. 2022 Jul 5;50(W1):W774-W781
pubmed: 35412637
Nature. 2022 Nov;611(7936):519-531
pubmed: 36261518
Nature. 2023 May;617(7960):312-324
pubmed: 37165242
Science. 2022 Apr;376(6588):44-53
pubmed: 35357919
Nat Genet. 2019 Sep;51(9):1380-1388
pubmed: 31427791
Nucleic Acids Res. 2019 Jul 2;47(W1):W158-W165
pubmed: 31165883
Comput Appl Biosci. 1995 Dec;11(6):615-9
pubmed: 8808577
Nature. 2022 Apr;604(7906):437-446
pubmed: 35444317
Annu Rev Genomics Hum Genet. 2021 Aug 31;22:81-102
pubmed: 33929893
BMC Genomics. 2017 Sep 12;18(1):724
pubmed: 28899353
Nature. 2020 Dec;588(7837):337-343
pubmed: 33239788
Nature. 2014 Nov 20;515(7527):355-64
pubmed: 25409824
Nature. 2021 Apr;592(7856):737-746
pubmed: 33911273
Cell. 2021 Oct 28;184(22):5541-5558.e22
pubmed: 34644528
Cell. 2018 Apr 5;173(2):283-285
pubmed: 29625045
Genome Res. 2003 Jan;13(1):103-7
pubmed: 12529312
Nature. 2012 Sep 6;489(7414):57-74
pubmed: 22955616
Genome Biol. 2023 Apr 17;24(1):74
pubmed: 37069644
PLoS One. 2012;7(1):e30377
pubmed: 22276185
Bioinformatics. 2023 Jan 1;39(1):
pubmed: 36562559
Nucleic Acids Res. 2022 Jan 7;50(D1):D1115-D1122
pubmed: 34718705
Bioinformatics. 2022 Jun 27;38(13):3319-3326
pubmed: 35552372
Genome Biol. 2016 Apr 12;17:66
pubmed: 27072794
Genome Res. 2002 Jun;12(6):996-1006
pubmed: 12045153
Cell Syst. 2016 Nov 23;3(5):496-499.e2
pubmed: 27863956
Genome Biol. 2020 Jan 24;21(1):16
pubmed: 31973766
Nat Methods. 2021 Feb;18(2):170-175
pubmed: 33526886
Curr Protoc Bioinformatics. 2010 Jun;Chapter 1:1.15.1-1.15.48
pubmed: 20521244
Nat Biotechnol. 2021 Mar;39(3):309-312
pubmed: 33288905
Nat Biotechnol. 2021 Mar;39(3):302-308
pubmed: 33288906
Cell. 2012 Jan 20;148(1-2):335-48
pubmed: 22244452
Nature. 2020 Nov;587(7833):252-257
pubmed: 33177665
Nat Biotechnol. 2011 Jan;29(1):24-6
pubmed: 21221095
Cell. 2012 Jun 8;149(6):1381-92
pubmed: 22682255
Nucleic Acids Res. 2022 Jan 7;50(D1):D988-D995
pubmed: 34791404
Cell Rep. 2015 Mar 3;10(8):1297-309
pubmed: 25732821
Nat Methods. 2011 Nov 29;8(12):989-90
pubmed: 22127213
Science. 2022 Apr;376(6588):eabl3533
pubmed: 35357935
Genome Res. 2002 Oct;12(10):1599-610
pubmed: 12368253
Genome Res. 2011 Sep;21(9):1512-28
pubmed: 21665927
BMC Biol. 2020 Jul 3;18(1):80
pubmed: 32620158
Bioinformatics. 2018 Sep 15;34(18):3094-3100
pubmed: 29750242
Genome Biol. 2021 Dec 6;22(1):332
pubmed: 34872606
Cell. 2015 Sep 24;163(1):68-83
pubmed: 26365491
Bioinformatics. 2011 Apr 1;27(7):1009-10
pubmed: 21278367
Bioinformatics. 2022 May 13;38(10):2922-2926
pubmed: 35561173

Auteurs

Xiaoyu Zhuo (X)

Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Silas Hsu (S)

Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Deepak Purushotham (D)

Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Prashant Kumar Kuntala (PK)

Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Jessica K Harrison (JK)

Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Alan Y Du (AY)

Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Samuel Chen (S)

Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Daofeng Li (D)

Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Ting Wang (T)

Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA; twang@genetics.wustl.edu.
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH