Agrimoniin is a dual inhibitor of AKT and ERK pathways that inhibit pancreatic cancer cell proliferation.


Journal

Phytotherapy research : PTR
ISSN: 1099-1573
Titre abrégé: Phytother Res
Pays: England
ID NLM: 8904486

Informations de publication

Date de publication:
Sep 2023
Historique:
revised: 08 04 2023
received: 08 01 2023
accepted: 25 04 2023
medline: 7 9 2023
pubmed: 9 5 2023
entrez: 8 5 2023
Statut: ppublish

Résumé

Molecular-targeted therapy has shown its effectiveness in pancreatic cancer, while single-targeted drug often cannot provide long-term benefit because of drug resistance. Fortunately, multitarget combination therapy can reverse drug resistance and achieve better efficacy. The typical treatment characteristics of traditional Chinese medicine monomer on tumor are multiple targets, with small side effects, low toxicity, and so forth. Agrimoniin has been reported to be effective on some cancers, while the mechanism still needs to be clarified. In this study, we used 5-ethynyl-2'-deoxyuridine, cell counting kit-8, flow cytometry, and western blot experiments to confirm that agrimoniin can significantly inhibit the proliferation of pancreatic cancer cell PANC-1 by inducing apoptosis and cell cycle arrest. In addition, by using SC79, LY294002 (the agonist or inhibitor of AKT pathway), and U0126 (the inhibitor of ERK pathway), we found that agrimoniin inhibited cell proliferation by simultaneously inhibiting AKT and ERK pathways. Moreover, agrimoniin could significantly increase the inhibitory effect of LY294002 and U0126 on pancreatic cancer cells. Meanwhile, in vivo experiments also supported the above results. In general, agrimoniin is a double-target inhibitor of AKT and ERK pathways in pancreatic cancer cells; it is expected to be used as a resistance reversal agent of targeted drugs or a synergistic drug of the inhibitor of AKT pathway or ERK pathway.

Identifiants

pubmed: 37156642
doi: 10.1002/ptr.7867
doi:

Substances chimiques

U 0126 0
Proto-Oncogene Proteins c-akt EC 2.7.11.1
agrimoniin 82203-01-8

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4076-4091

Subventions

Organisme : National Natural Science Foundation of China
ID : 81503374

Informations de copyright

© 2023 John Wiley & Sons Ltd.

Références

Bendris, N., Lemmers, B., Blanchard, J. M., & Arsic, N. (2011). Cyclin A2 mutagenesis analysis: A new insight into CDK activation and cellular localization requirements. PLoS One, 6(7), e22879. https://doi.org/10.1371/journal.pone.0022879
Cao, D. J., Song, Q. Q., Li, J. Q., Jiang, Y. Y., Wang, Z. M., & Lu, S. S. (2021). Opportunities and challenges in targeted therapy and immunotherapy for pancreatic cancer. Expert Reviews in Molecular Medicine, 23, e21. https://doi.org/10.1017/erm.2021.26
Dal Molin, M., Zhang, M., de Wilde, R. F., Ottenhof, N. A., Rezaee, N., Wolfgang, C. L., & Wood, L. D. (2015). Very long-term survival following resection for pancreatic cancer is not explained by commonly mutated genes: Results of whole-exome sequencing analysis. Clinical Cancer Research, 21(8), 1944-1950. https://doi.org/10.1158/1078-0432.CCR-14-2600
Deng, X. M., Xiao, L., Lang, W. H., Gao, F. Q., Ruvolo, P., & May, W. S., Jr. (2001). Novel role for JNK as a stress-activated Bcl 2 kinase. Journal of Biological Chemistry, 276(26), 23681-23688. https://doi.org/10.1074/jbc.M100279200
Engelman, J. A., Luo, J., & Cantley, L. C. (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Reviews Genetics, 7(8), 606-619. https://doi.org/10.1038/nrg1879
Grasso, C., Jansen, G., & Giovannetti, E. (2017). Drug resistance in pancreatic cancer: Impact of altered energy metabolism. Critical Reviews in Oncology Hematology, 114, 139-152. https://doi.org/10.1016/j.critrevonc.2017.03.026
Griffin, J. F., Poruk, K. E., & Wolfgang, C. L. (2015). Pancreatic cancer surgery: Past, present, and future. Chinese Journal of Cancer Research, 27(4), 332-348. https://doi.org/10.3978/j.issn.1000-9604.2015.06.07
Gu, Y., Rosenblatt, J., & Morgan, D. O. (1992). Cell cycle regulation of CDK2 activity by phosphorylation of Thr 160 and Tyr 15. EMBO Journal, 11(11), 3995-4005. https://doi.org/10.1002/j.1460-2075.1992.tb05493.x
Jeffrey, P. D., Russo, A. A., Polyak, K., Gibbs, E., Hurwitz, J., Massagué, J., & Pavletich, N. P. (1995). Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex. Nature, 376(6538), 313-320. https://doi.org/10.1038/376313a0
Katso, R., Okkenhaug, K., Ahmadi, K., White, S., Timms, J., & Waterfield, M. D. (2001). Cellular function of phosphoinositide 3-kinases: Implications for development, homeostasis, and cancer. Annual Review of Cell and Developmental Biology, 17, 615-675. https://doi.org/10.1146/annurev.cellbio.17.1.615
Koshiura, R., Miyamoto, K., Ikeya, Y., & Taguchi, H. (1985). Antitumor activity of methanol extract from roots of Agrimonia pilosa Ledeb. Japanese Journal of Pharmacology, 38(1), 9-16. https://doi.org/10.1254/jjp.38.9
Kun, E., Tsang, Y. T. M., Ng, C. W., Gershenson, D. M., & Wong, K. K. (2021). MEK inhibitor resistance mechanisms and recent developments in combination trials. Cancer Treatment Reviews, 92, 102137. https://doi.org/10.1016/j.ctrv.2020.102137
Leonetti, A., Sharma, S., Minari, R., Perego, P., Giovannetti, E., & Tiseo, M. (2019). Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. British Journal of Cancer, 121(9), 725-737. https://doi.org/10.1038/s41416-019-0573-8
Lu, S. S., Ahmed, T., Du, P., & Wang, Y. (2017). Genomic variations in pancreatic cancer and potential opportunities for development of new approaches for diagnosis and treatment. International Journal of Molecular Sciences, 18(6), 1201. https://doi.org/10.3390/ijms18061201
Martini, M., De Santis, M. C., Braccini, L., Gulluni, F., & Hirsch, E. (2014). PI3K/AKT signaling pathway and cancer: An updated review. Annals of Medicine, 46(6), 372-383. https://doi.org/10.3109/07853890.2014.912836
Mirzoeva, O. K., Collisson, E. A., Schaefer, P. M., Hann, B., Hom, Y. K., Ko, A. H., & Korn, W. M. (2013). Subtype-specific MEK-PI3 kinase feedback as a therapeutic target in pancreatic adenocarcinoma. Molecular Cancer Therapeutics, 12(10), 2213-2225. https://doi.org/10.1158/1535-7163.MCT-13-0104
Miyamoto, K., Koshiura, R., Ikeya, Y., & Taguchi, H. (1985). Isolation of agrimoniin, an antitumor constituent, from the roots of Agrimonia pilosa Ledeb. Chemical & Pharmaceutical Bulletin, 33(9), 3977-3981. https://doi.org/10.1248/cpb.33.3977
Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7(2), 27-31. https://doi.org/10.4103/0976-0105.177703
Ohtsubo, M., Theodoras, A. M., Schumacher, J., Roberts, J. M., & Pagano, M. (1995). Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Molecular and Cellular Biology, 15(5), 2612-2624. https://doi.org/10.1128/MCB.15.5.2612
Okamoto, K., Okamoto, I., Hatashita, E., Kuwata, K., Yamaguchi, H., Kita, A., Yamanaka, K., Ono, M., & Nakagawa, K. (2012). Overcoming erlotinib resistance in EGFR mutation-positive non-small cell lung cancer cells by targeting surviving. Molecular Cancer Therapeutics, 11(1), 204-213. https://doi.org/10.1158/1535-7163.MCT-11-0638
Okuda, T., Yoshida, T., Kuwahara, M., Memon, M. U., & Shingu, T. (1982). Agrimoniin and potentillin, an ellagitannin dimer and monomer having an α-glucose core. Journal of the Chemical Society, Chemical Communications, 3, 163-164. https://doi.org/10.1039/C39820000163
Philip, P. A., Lacy, J., Portales, F., Sobrero, A., Pazo-Cid, R., Manzano Mozo, J. L., Kim, E. J., Dowden, S., Zakari, A., Borg, C., Terrebonne, E., Rivera, F., Sastre, J., Bathini, V., López-Trabada, D., Asselah, J., Saif, M. W., Shiansong Li, J., Ong, T. J., … Hammel, P. (2020). Nab-paclitaxel plus gemcitabine in patients with locally advanced pancreatic cancer (LAPACT): A multicentre, open-label phase 2 study. The Lancet. Gastroenterology & Hepatology, 5(3), 285-294. https://doi.org/10.1016/S2468-1253(19)30327-9
Raphael, B. J., Hruban, R. H., Aguirre, A. J., Moffitt, R. A., Yeh, J. J., Stewart, C., Robertson, A. G., Cherniack, A. D., Gupta, M., Getz, G., Gabriel, S. B., Meyerson, M., Cibulskis, C., Fei, S. S., Hinoue, T., Shen, H., Laird, P. W., Ling, S., Lu, Y., … Zenklusen, J. C. (2017). Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell, 32(2), 185-203.e13. https://doi.org/10.1016/j.ccell.2017.07.007
Roth, M. T., Cardin, D. B., & Berlin, J. D. (2020). Recent advances in the treatment of pancreatic cancer. F1000Research, 9, F1000 Faculty Rev-131. https://doi.org/10.12688/f1000research.21981.1
Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics. CA: A Cancer Journal for Clinicians, 69(1), 7-34. https://doi.org/10.3322/caac.21551
Stella, G. M., Luisetti, M., Inghilleri, S., Cemmi, F., Scabini, R., Zorzetto, M., & Pozzi, E. (2012). Targeting EGFR in non-small-cell lung cancer: Lessons, experiences, strategies. Respiratory Medicine, 106(2), 173-183. https://doi.org/10.1016/j.rmed.2011.10.015
Tao, J. X., Yang, G., Zhou, W. C., Qiu, J. D., Chen, G. Y., Luo, W. H., Zhao, F., You, L., Zheng, L., Zhang, T., & Zhao, Y. (2021). Targeting hypoxic tumor microenvironment in pancreatic cancer. Journal of Hematology & Oncology, 14(1), 14. https://doi.org/10.1186/s13045-020-01030-w
von Manstein, V., Yang, C. M., Richter, D., Delis, N., Vafaizadeh, V., & Groner, B. (2013). Resistance of cancer cells to targeted therapies through the activation of compensating signaling loops. Current Signal Transduction Therapy, 8(3), 193-202. https://doi.org/10.2174/1574362409666140206221931
Wang, B. Q., & Jin, Z. X. (2011). Agrimoniin induced SGC7901 cell apoptosis associated mitochondrial transmembrane potential and intracellular calcium concentration. Journal of Medicinal Plants Research, 5(15), 3513-3519. https://doi.org/10.5897/JMPR.9000049
Wang, X., Wu, X. Y., Zhang, Z. L., Ma, C., Wu, T. T., Tang, S. L., Zeng, Z., Huang, S., Gong, C., Yuan, C., Zhang, L., Feng, Y., Huang, B., Liu, W., Zhang, B., Shen, Y., Luo, W., Wang, X., Liu, B., … He, T. C. (2018). Monensin inhibits cell proliferation and tumor growth of chemo-resistant pancreatic cancer cells by targeting the EGFR signaling pathway. Scientific Reports, 8(1), 17914. https://doi.org/10.1038/s41598-018-36214-5
Yang, J., Nie, J., Ma, X. L., Wei, Y. Q., Peng, Y., & Wei, X. W. (2019). Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Molecular Cancer, 18(1), 26. https://doi.org/10.1186/s12943-019-0954-x
Yang, L. H., Lin, S. C., Kang, Y. T., Xiang, Y. Q., Xu, L. Y., Li, J. F., Dai, X., Liang, G., Huang, X., & Zhao, C. G. (2019). Rhein sensitizes human pancreatic cancer cells to EGFR inhibitors by inhibiting STAT3 pathway. Journal of Experimental & Clinical Cancer Research, 38(1), 31. https://doi.org/10.1186/s13046-018-1015-9
Yang, Y. N., Tian, W. C., Yang, L., Zhang, Q., Zhu, M. M., Liu, Y. S., Li, J., Yang, L., Liu, J., Shen, Y., & Qi, Z. (2021). Gemcitabine potentiates anti-tumor effect of resveratrol on pancreatic cancer via down-regulation of VEGF-B. Journal of Cancer Research and Clinical Oncology, 147(1), 93-103. https://doi.org/10.1007/s00432-020-03384-7
Yoshida, T., Yamasaki, S., Kaneko, O., Taoka, N., Tomimoto, Y., Namatame, I., Yahata, T., Kuromitsu, S., Cantley, L. C., & Lyssiotis, C. A. (2020). A covalent small molecule inhibitor of glutamate-oxaloacetate transaminase 1 impairs pancreatic cancer growth. Biochemical and Biophysical Research Cmmunications, 522(3), 633-638. https://doi.org/10.1016/j.bbrc.2019.11.130

Auteurs

Xiongfei Zhang (X)

School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.

Jianping Chen (J)

School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.

Beili Xi (B)

School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.

Yutong Liu (Y)

School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.

Shaojun Wang (S)

School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.

Ling Gu (L)

College of Traditional Chinese Medicine & Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing, China.

Huanhuan Zhao (H)

School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.

Li Tao (L)

School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.

Yang Hua (Y)

School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.

Yan Wang (Y)

Endoscopy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

Meijuan Chen (M)

School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH