Intracellular Lipid Levels and Oxidative Stress in Peripheral Blood Mononuclear Cells in Experimental Type 1 Diabetes Mellitus.


Journal

Bulletin of experimental biology and medicine
ISSN: 1573-8221
Titre abrégé: Bull Exp Biol Med
Pays: United States
ID NLM: 0372557

Informations de publication

Date de publication:
Apr 2023
Historique:
received: 20 10 2022
medline: 22 5 2023
pubmed: 9 5 2023
entrez: 8 5 2023
Statut: ppublish

Résumé

Type 1 diabetes mellitus was modeled in Wistar rats by intraperitoneal injection of streptozotocin (25 mg/kg for 5 days), which led to the appearance of the main symptoms of insulin-dependent diabetes. In peripheral blood mononuclear cells isolated by centrifugation on a Ficoll density gradient, the production of ROS and the level of intracellular lipids were evaluated by flow cytofluorimetry. In rats with type 1 diabetes mellitus, an increase in ROS levels in isolated peripheral blood monocytes, but not in the lymphocytic fraction was revealed. Incubation of isolated monocytes in a medium containing 1 mM oleic acid led to a 1.5-fold increase of intracellular lipid levels. After incubation of the lymphocyte fraction in this medium, no differences from the control were revealed. Disorders of carbohydrate and lipid metabolism in type 1 diabetes mellitus leading to an increase of free fatty acids and ROS levels can be detected ex vivo in isolated peripheral blood mononuclear cells.

Identifiants

pubmed: 37157046
doi: 10.1007/s10517-023-05778-2
pii: 10.1007/s10517-023-05778-2
doi:

Substances chimiques

Reactive Oxygen Species 0
Fatty Acids, Nonesterified 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

719-722

Informations de copyright

© 2023. Springer Science+Business Media, LLC, part of Springer Nature.

Références

Novoselova EG, Glushkova OV, Khrenov MO, Lunin SM, Novoselova TV, Parfenuyk SB. Role of innate immunity and oxidative stress in the development of type 1 diabetes mellitus. Peroxiredoxin 6 as a new anti-diabetic agent. Biochemistry (Mosc). 2021;86(12):1579-1589. https://doi.org/10.1134/S0006297921120075
Hao JW, Wang J, Guo H, Zhao YY, Sun HH, Li YF, Lai XY, Zhao N, Wang X, Xie C, Hong L, Huang X, Wang HR, Li CB, Liang B, Chen S, Zhao TJ. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat. Commun. 2020;11(1):4765. https://doi.org/10.1038/s41467-020-18565-8
doi: 10.1038/s41467-020-18565-8 pubmed: 32958780 pmcid: 7505845
Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, Wang Q, Yang M, Qian J, Yi Q. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 2021;33(5):1001-1012.e5. https://doi.org/10.1016/j.cmet.2021.02.015
doi: 10.1016/j.cmet.2021.02.015 pubmed: 33691090 pmcid: 8102368
Jones AR IV, Coleman EL, Husni NR, Deeney JT, Raval F, Steenkamp D, Dooms H, Nikolajczyk BS, Corkey BE. Type 1 diabetes alters lipid handling and metabolism in human fibroblasts and peripheral blood mononuclear cells. PLoS One. 2017;12(12):e0188474. https://doi.org/10.1371/journal.pone.0188474
Wu KK, Huan Y. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol. 2008;(Chapter 5: Unit 5.47). https://doi.org/10.1002/0471141755.ph0547s40
Fuss IJ, Kanof ME, Smith PD, Zola H. Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr. Protoc. Immunol. 2009;(Chapter 7: Unit 7.1). https://doi.org/10.1002/0471142735.im0701s85
Norton L, Shannon C, Gastaldelli A, DeFronzo RA. Insulin: The master regulator of glucose metabolism. Metabolism. 2022;129:155142. https://doi.org/10.1016/j.metabol.2022.155142
Ponath V, Kaina B. Death of monocytes through oxidative burst of macrophages and neutrophils: killing in trans. PLoS One. 2017;12(1):e0170347. https://doi.org/10.1371/journal.pone.0170347
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020;21(7):363-383. https://doi.org/10.1038/s41580-020-0230-3
doi: 10.1038/s41580-020-0230-3 pubmed: 32231263
Corkey BE, Kilpatrick LE, Evans-Molina C. Hypothesis: induction of autoimmunity in type 1 diabetes — a lipid focus. Diabetes. 2022;71(10):2067-2074. https://doi.org/10.2337/db22-0240
doi: 10.2337/db22-0240 pubmed: 36126206
Zhang M, Zhou Y, Xie Z, Luo S, Zhou Z, Huang J, Zhao B. New developments in T cell immunometabolism and therapeutic implications for type 1 diabetes. Front. Endocrinol. (Lausanne). 2022;13:914136. https://doi.org/10.3389/fendo.2022.914136

Auteurs

V V Ivanov (VV)

Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia. ivanovvv1953@gmail.com.

E E Buyko (EE)

Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia.

A A Ufandeev (AA)

Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia.

K V Nevskaya (KV)

Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia.

E V Udut (EV)

Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia.

K I Poluektova (KI)

Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia.

T V Saprina (TV)

Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia.

V V Udut (VV)

E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH