The rate of adaptive molecular evolution in wild and domesticated Saccharomyces cerevisiae populations.

Saccharomyces cerevisiae adaptive evolution demographic inference domestication population genetics

Journal

Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478

Informations de publication

Date de publication:
08 May 2023
Historique:
revised: 22 04 2023
received: 16 12 2022
accepted: 26 04 2023
pubmed: 9 5 2023
medline: 9 5 2023
entrez: 9 5 2023
Statut: aheadofprint

Résumé

Through its fermentative capacities, Saccharomyces cerevisiae was central in the development of civilisation during the Neolithic period, and the yeast remains of importance in industry and biotechnology, giving rise to bona fide domesticated populations. Here, we conduct a population genomic study of domesticated and wild populations of S. cerevisiae. Using coalescent analyses, we report that the effective population size of yeast populations decreased since the divergence with S. paradoxus. We fitted models of distributions of fitness effects to infer the rate of adaptive (

Identifiants

pubmed: 37157166
doi: 10.1111/mec.16980
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Max-Planck-Gesellschaft

Informations de copyright

© 2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

Références

Ahmad, H. I., Ahmad, M. J., Jabbir, F., Ahmar, S., Ahmad, N., Elokil, A. A., & Chen, J. (2020). The domestication makeup: Evolution, survival, and challenges. Frontiers in Ecology and Evolution, 8, 103.
Akaike, H. (1973). Maximum likelihood identification of gaussian autoregressive moving average models. Biometrika, 60(2), 255-265. https://doi.org/10.1093/biomet/60.2.255
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/s0022-2836(05)80360-2
Bencko, V., & Foong, Y. L. (2017). The history of arsenical pesticides and health risks related to the use of agent blue. Annals of Agricultural and Environmental Medicine, 24(2), 312-316. https://doi.org/10.26444/aaem/74715
Betlej, G., Bator, E., Oklejewicz, B., Potocki, L., Górka, A., Slowik-Borowiec, M., Czarny, W., Domka, W., & Kwiatkowska, A. (2020). Long-term adaption to high osmotic stress as a tool for improving enological characteristics in industrial wine yeast. Genes (Basel), 11(5), 576. https://doi.org/10.3390/genes11050576
Blanchette, M., Kent, W. J., Riemer, C., Elnitski, L., Smit, A. F., Roskin, K. M., Baertsch, R., Rosenbloom, K., Clawson, H., Green, E. D., Haussler, D., & Miller, W. (2004). Aligning multiple genomic sequences with the threaded blockset aligner. Genome Research, 14(4), 708-715. https://doi.org/10.1101/gr.1933104
Boitard, S., Arredondo, A., Chikhi, L., & Mazet, O. (2022). Heterogeneity in effective size across the genome: Effects on the inverse instantaneous coalescence rate (IICR) and implications for demographic inference under linked selection. Genetics, 220(3), iyakc008. https://doi.org/10.1093/genetics/iyac008
Botstein, D., & Fink, G. R. (2011). Yeast: An experimental organism for 21st century biology. Genetics, 189(3), 695-704. https://doi.org/10.1534/genetics.111.130765
Castellano, D., Coronado-Zamora, M., Campos, J. L., Barbadilla, A., & Eyre-Walker, A. (2016). Adaptive evolution is substantially impeded by Hill-Robertson interference in drosophila. Molecular Biology and Evolution, 33(2), 442-455. https://doi.org/10.1093/molbev/msv236
Charif, D., & Lobry, J. R. (2007). SeqinR 1.0-2: A contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In U. Bastolla, M. Porto, H. E. Roman, & M. Vendruscolo (Eds.), Structural approaches to sequence evolution: Molecules, networks, populations (pp. 207-232). Springer Berlin Heidelberg.
Charif, D., Thioulouse, J., Lobry, J. R., & Perrière, G. (2004). Online synonymous codon usage analyses with the ade4 and seqinR packages. Bioinformatics, 21(4), 545-547. https://doi.org/10.1093/bioinformatics/bti037
Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10(3), 195-205. https://doi.org/10.1038/nrg2526
Chikhi, L., Rodríguez, W., Grusea, S., Santos, P., Boitard, S., & Mazet, O. (2018). The IICR (inverse instantaneous coalescence rate) as a summary of genomic diversity: Insights into demographic inference and model choice. Heredity, 120(1), 13-24. https://doi.org/10.1038/s41437-017-0005-6
Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., & de Hoon, M. J. (2009). Biopython: Freely available python tools for computational molecular biology and bioinformatics. Bioinformatics, 25(11), 1422-1423. https://doi.org/10.1093/bioinformatics/btp163
Comeron, J. M., Williford, A., & Kliman, R. M. (2008). The Hill-Robertson effect: Evolutionary consequences of weak selection and linkage in finite populations. Heredity, 100(1), 19-31. https://doi.org/10.1038/sj.hdy.6801059
Connallon, T., & Knowles, L. L. (2007). Recombination rate and protein evolution in yeast. BMC Evolutionary Biology, 7(1), 235. https://doi.org/10.1186/1471-2148-7-235
Conway, J. R., Lex, A., & Gehlenborg, N. (2017). UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics, 33(18), 2938-2940. https://doi.org/10.1093/bioinformatics/btx364
Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. https://doi.org/10.1093/gigascience/giab008
Darwin, C. (1868). The variation of animals and plants under domestication. J. Murray.
de Chiara, M., Barré, B. P., Persson, K., Irizar, A., Vischioni, C., Khaiwal, S., Stenberg, S., Amadi, O. C., Žun, G., Doberšek, K., Taccioli, C., Schacherer, J., Petrovič, U., Warringer, J., & Liti, G. (2022). Domestication reprogrammed the budding yeast life cycle. Nature Ecology & Evolution, 6(4), 448-460. https://doi.org/10.1038/s41559-022-01671-9
De León-Rodríguez, A., González-Hernández, L., Barba de la Rosa, A. P., Escalante-Minakata, P., & López, M. G. (2006). Characterization of volatile compounds of mezcal, an ethnic alcoholic beverage obtained from Agave salmiana. Journal of Agricultural and Food Chemistry, 54(4), 1337-1341. https://doi.org/10.1021/jf052154+
Diamond, J. (2002). Evolution, consequences and future of plant and animal domestication. Nature, 418(6898), 700-707. https://doi.org/10.1038/nature01019
Djeni, T. N., Kouame, K. H., Ake, F. D. M., Amoikon, L. S. T., Dje, M. K., & Jeyaram, K. (2020). Microbial diversity and metabolite profiles of palm wine produced from three different palm tree species in Côte D'ivoire. Scientific Reports, 10(1), 1715. https://doi.org/10.1038/s41598-020-58587-2
Duan, S.-F., Han, P.-J., Wang, Q.-M., Liu, W.-Q., Shi, J.-Y., Li, K., Zhang, X. L., & Bai, F. Y. (2018). The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nature Communications, 9(1), 2690. https://doi.org/10.1038/s41467-018-05106-7
Duina, A. A., Miller, M. E., & Keeney, J. B. (2014). Budding yeast for budding geneticists: A primer on the Saccharomyces cerevisiae model system. Genetics, 197(1), 33-48. https://doi.org/10.1534/genetics.114.163188
Dutheil, J. Y., Gaillard, S., & Stukenbrock, E. H. (2014). MafFilter: A highly flexible and extensible multiple genome alignment files processor. BMC Genomics, 15, 53. https://doi.org/10.1186/1471-2164-15-53
Eyre-Walker, A., & Keightley, P. D. (2007). The distribution of fitness effects of new mutations. Nature Reviews Genetics, 8(8), 610-618. https://doi.org/10.1038/nrg2146
Eyre-Walker, A., & Keightley, P. D. (2009). Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Molecular Biology and Evolution, 26(9), 2097-2108. https://doi.org/10.1093/molbev/msp119
Eyre-Walker, A., Woolfit, M., & Phelps, T. (2006). The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics, 173(2), 891-900. https://doi.org/10.1534/genetics.106.057570
Fox, J., & Weisberg, S. (2018). An R companion to applied regression. SAGE Publications.
Fuller, D. Q., & Stevens, C. J. (2019). Between domestication and civilization: The role of agriculture and arboriculture in the emergence of the first urban societies. Vegetation History and Archaeobotany, 28(3), 263-282. https://doi.org/10.1007/s00334-019-00727-4
Gallone, B., Steensels, J., Prahl, T., Soriaga, L., Saels, V., Herrera-Malaver, B., Merlevede, A., Roncoroni, M., Voordeckers, K., Miraglia, L., Teiling, C., Steffy, B., Taylor, M., Schwartz, A., Richardson, T., White, C., Baele, G., Maere, S., & Verstrepen, K. J. (2016). Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell, 166(6), 1397-1410. https://doi.org/10.1016/j.cell.2016.08.020
Galtier, N. (2016). Adaptive protein evolution in animals and the effective population size hypothesis. PLoS Genetics, 12(1), e1005774. https://doi.org/10.1371/journal.pgen.1005774
Goddard, M. R., Godfray, H. C., & Burt, A. (2005). Sex increases the efficacy of natural selection in experimental yeast populations. Nature, 434(7033), 636-640. https://doi.org/10.1038/nature03405
Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., & Oliver, S. G. (1996). Life with 6000 genes. Science, 274(5287), 563-547. https://doi.org/10.1126/science.274.5287.546
Gossmann, T. I., Keightley, P. D., & Eyre-Walker, A. (2012). The effect of variation in the effective population size on the rate of adaptive molecular evolution in eukaryotes. Genome Biology and Evolution, 4(5), 658-667. https://doi.org/10.1093/gbe/evs027
Grafen, A. (1989). The phylogenetic regression. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 326(1233), 119-157. https://doi.org/10.1098/rstb.1989.0106
Grandaubert, J., Dutheil, J. Y., & Stukenbrock, E. H. (2019). The genomic determinants of adaptive evolution in a fungal pathogen. Evolution Letters, 3(3), 299-312. https://doi.org/10.1002/evl3.117
Guéguen, L., Gaillard, S., Boussau, B., Gouy, M., Groussin, M., Rochette, N. C., Bigot, T., Fournier, D., Pouyet, F., Cahais, V., Bernard, A., Scornavacca, C., Nabholz, B., Haudry, A., Dachary, L., Galtier, N., Belkhir, K., & Dutheil, J. Y. (2013). Bio++: Efficient extensible libraries and tools for computational molecular evolution. Molecular Biology and Evolution, 30(8), 1745-1750. https://doi.org/10.1093/molbev/mst097
Haubold, B., Klötzl, F., & Pfaffelhuber, P. (2015). Andi: Fast and accurate estimation of evolutionary distances between closely related genomes. Bioinformatics, 31(8), 1169-1175. https://doi.org/10.1093/bioinformatics/btu815
Hill, W. G., & Robertson, A. (1966). The effect of linkage on limits to artificial selection. Genetical Research, 8(3), 269-294.
Hudson, R. R., Kreitman, M., & Aguadé, M. (1987). A test of neutral molecular evolution based on nucleotide data. Genetics, 116(1), 153-159. https://doi.org/10.1093/genetics/116.1.153
Jo, W. J., Loguinov, A., Chang, M., Wintz, H., Nislow, C., Arkin, A. P., Giaever, G., & Vulpe, C. D. (2007). Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants. Toxicological Sciences, 101(1), 140-151. https://doi.org/10.1093/toxsci/kfm226
Johri, P., Riall, K., Becher, H., Excoffier, L., Charlesworth, B., & Jensen, J. D. (2021). The impact of purifying and background selection on the inference of population history: Problems and prospects. Molecular Biology and Evolution, 38(7), 2986-3003. https://doi.org/10.1093/molbev/msab050
Kassambara, A. (2020). ggpubr: 'ggplot2' based publication ready plots. .
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010
Klausen, M. S., Jespersen, M. C., Nielsen, H., Jensen, K. K., Jurtz, V. I., Sønderby, C. K., & Marcatili, P. (2019). NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins: Structure, Function, and Bioinformatics, 87(6), 520-527. https://doi.org/10.1002/prot.25674
Lahue, C., Madden, A. A., Dunn, R. R., & Smukowski Heil, C. (2020). History and domestication of Saccharomyces cerevisiae in bread baking. Frontiers in Genetics, 11, 584718. https://doi.org/10.3389/fgene.2020.584718
Lanfear, R., Kokko, H., & Eyre-Walker, A. (2014). Population size and the rate of evolution. Trends in Ecology & Evolution, 29(1), 33-41. https://doi.org/10.1016/j.tree.2013.09.009
Large, C. R. L., Hanson, N., Tsouris, A., Saada, O. A., Koonthongkaew, J., Toyokawa, Y., & Dunham, M. J. (2020). Genomic stability and adaptation of beer brewing yeasts during serial repitching in the brewery. bioRxiv. https://doi.org/10.1101/2020.06.26.166157
Lefort, V., Desper, R., & Gascuel, O. (2015). FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Molecular Biology and Evolution, 32(10), 2798-2800. https://doi.org/10.1093/molbev/msv150
Legras, J. L., Galeote, V., Bigey, F., Camarasa, C., Marsit, S., Nidelet, T., Sanchez, I., Couloux, A., Guy, J., Franco-Duarte, R., Marcet-Houben, M., Gabaldon, T., Schuller, D., Sampaio, J. P., & Dequin, S. (2018). Adaptation of S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication. Molecular Biology and Evolution, 35(7), 1712-1727. https://doi.org/10.1093/molbev/msy066
Legras, J. L., Merdinoglu, D., Cornuet, J. M., & Karst, F. (2007). Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Molecular Ecology, 16(10), 2091-2102. https://doi.org/10.1111/j.1365-294X.2007.03266.x
Liti, G. (2015). The fascinating and secret wild life of the budding yeast S. cerevisiae. eLife, 4, e05835. https://doi.org/10.7554/eLife.05835
Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., Davey, R. P., Roberts, I. N., Burt, A., Koufopanou, V., Tsai, I. J., Bergman, C. M., Bensasson, D., O'Kelly, M. J., van Oudenaarden, A., Barton, D. B., Bailes, E., Nguyen, A. N., Jones, M., … Louis, E. J. (2009). Population genomics of domestic and wild yeasts. Nature, 458(7236), 337-341. https://doi.org/10.1038/nature07743
Liu, H., Maclean, C. J., & Zhang, J. (2018). Evolution of the yeast recombination landscape. Molecular Biology and Evolution, 36(2), 412-422. https://doi.org/10.1093/molbev/msy233
Ludlow, C. L., Cromie, G. A., Garmendia-Torres, C., Sirr, A., Hays, M., Field, C., Jeffery, E. W., Fay, J. C., & Dudley, A. M. (2016). Independent origins of yeast associated with coffee and cacao fermentation. Current Biology, 26(7), 965-971. https://doi.org/10.1016/j.cub.2016.02.012
Mailund, T., Halager, A. E., Westergaard, M., Dutheil, J. Y., Munch, K., Andersen, L. N., Lunter, G., Prüfer, K., Scally, A., Hobolth, A., & Schierup, M. H. (2012). A new isolation with migration model along complete genomes infers very different divergence processes among closely related great ape species. PLoS Genetics, 8(12), e1003125. https://doi.org/10.1371/journal.pgen.1003125
Malaspinas, A.-S., Westaway, M. C., Muller, C., Sousa, V. C., Lao, O., Alves, I., & Willerslev, E. (2016). A genomic history of aboriginal Australia. Nature, 538(7624), 207-214. https://doi.org/10.1038/nature18299
Marais, G., & Charlesworth, B. (2003). Genome evolution: Recombination speeds up adaptive evolution. Current Biology, 13(2), R68-R70. https://doi.org/10.1016/s0960-9822(02)01432-x
Marsit, S., Leducq, J. B., Durand, É., Marchant, A., Filteau, M., & Landry, C. R. (2017). Evolutionary biology through the lens of budding yeast comparative genomics. Nature Reviews. Genetics, 18(10), 581-598. https://doi.org/10.1038/nrg.2017.49
Mazet, O., Rodríguez, W., Grusea, S., Boitard, S., & Chikhi, L. (2016). On the importance of being structured: Instantaneous coalescence rates and human evolution-Lessons for ancestral population size inference? Heredity, 116(4), 362-371. https://doi.org/10.1038/hdy.2015.104
McDonald, J. H., & Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in drosophila. Nature, 351(6328), 652-654. https://doi.org/10.1038/351652a0
McGovern, P. E., Zhang, J., Tang, J., Zhang, Z., Hall, G. R., Moreau, R. A., Nuñez, A., Butrym, E. D., Richards, M. P., Wang, C. S., Cheng, G., Zhao, Z., & Wang, C. (2004). Fermented beverages of pre- and proto-historic China. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17593-17598. https://doi.org/10.1073/pnas.0407921102
Money, N. P. (2018). The rise of yeast: How the sugar fungus shaped civilization. Oxford University Press.
Moutinho, A. F., Trancoso, F. F., & Dutheil, J. Y. (2019). The impact of protein architecture on adaptive evolution. Molecular Biology and Evolution, 36(9), 2013-2028. https://doi.org/10.1093/molbev/msz134
Moyers, B. T., Morrell, P. L., & McKay, J. K. (2017). Genetic costs of domestication and improvement. Journal of Heredity, 109(2), 103-116. https://doi.org/10.1093/jhered/esx069
Olson-Manning, C. F., Wagner, M. R., & Mitchell-Olds, T. (2012). Adaptive evolution: Evaluating empirical support for theoretical predictions. Nature Reviews. Genetics, 13(12), 867-877. https://doi.org/10.1038/nrg3322
Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526-528. https://doi.org/10.1093/bioinformatics/bty633
Parapouli, M., Vasileiadis, A., Afendra, A.-S., & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology, 6(1), 1-31. https://doi.org/10.3934/microbiol.2020001
Peter, J., de Chiara, M., Friedrich, A., Yue, J.-X., Pflieger, D., Bergström, A., Sigwalt, A., Barre, B., Freel, K., Llored, A., Cruaud, C., Labadie, K., Aury, J. M., Istace, B., Lebrigand, K., Barbry, P., Engelen, S., Lemainque, A., Wincker, P., … Schacherer, J. (2018). Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 556(7701), 339-344. https://doi.org/10.1038/s41586-018-0030-5
Pietrzak, U., & McPhail, D. C. (2004). Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma, 122(2), 151-166. https://doi.org/10.1016/j.geoderma.2004.01.005
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2021). nlme: Linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme
Pontes, A., Čadež, N., Gonçalves, P., & Sampaio, J. P. (2019). A quasi-domesticate relic hybrid population of Saccharomyces cerevisiae × S. paradoxus adapted to olive brine. Frontiers in Genetics, 10, 449. https://doi.org/10.3389/fgene.2019.00449
R Development Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing http://R-project.org
Raas, M. W. D., & Dutheil, J. Y. (2022). Data and scripts for S. cerevisiae population genomics analyses. Version 2.0. https://doi.org/10.6084/m9.figshare.21725513.v2
Rambaut, A. (2018). FigTree. http://tree.bio.ed.ac.uk/software/figtree/
Ramsey, D. C., Scherrer, M. P., Zhou, T., & Wilke, C. O. (2011). The relationship between relative solvent accessibility and evolutionary rate in protein evolution. Genetics, 188(2), 479-488. https://doi.org/10.1534/genetics.111.128025
Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N., & Delsuc, F. (2018). MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Molecular Biology and Evolution, 35(10), 2582-2584. https://doi.org/10.1093/molbev/msy159
Ross-Ibarra, J., Morrell, P. L., & Gaut, B. S. (2007). Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proceedings of the National Academy of Sciences of the United States of America, 104(Suppl 1), 8641-8648. https://doi.org/10.1073/pnas.0700643104
Rousselle, M., Mollion, M., Nabholz, B., Bataillon, T., & Galtier, N. (2018). Overestimation of the adaptive substitution rate in fluctuating populations. Biology Letters, 14(5), 20180055. https://doi.org/10.1098/rsbl.2018.0055
Rousselle, M., Simion, P., Tilak, M.-K., Figuet, E., Nabholz, B., & Galtier, N. (2020). Is adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals. PLoS Genetics, 16(4), e1008668. https://doi.org/10.1371/journal.pgen.1008668
Schiffels, S., & Wang, K. (2020). MSMC and MSMC2: The multiple sequentially Markovian coalescent. In J. Y. Dutheil (Ed.), Statistical population genomics (pp. 147-166). Springer US.
Schwan, R. F., & Wheals, A. E. (2004). The microbiology of cocoa fermentation and its role in chocolate quality. Critical Reviews in Food Science and Nutrition, 44(4), 205-221. https://doi.org/10.1080/10408690490464104
Schweizer, G., Haider, M. B., Barroso, G. V., Rössel, N., Münch, K., Kahmann, R., & Dutheil, J. Y. (2021). Population genomics of the maize pathogen Ustilago maydis: Demographic history and role of virulence clusters in adaptation. Genome Biology and Evolution, 13(5), evab073. https://doi.org/10.1093/gbe/evab073
Sicard, D., & Legras, J. L. (2011). Bread, beer and wine: Yeast domestication in the Saccharomyces sensu stricto complex. Comptes Rendus Biologies, 334(3), 229-236. https://doi.org/10.1016/j.crvi.2010.12.016
Smith, N. G. C., & Eyre-Walker, A. (2002). Adaptive protein evolution in drosophila. Nature, 415(6875), 1022-1024. https://doi.org/10.1038/4151022a
Soni, V., Moutinho, A. F., & Eyre-Walker, A. (2022). Changing population size in McDonald-Kreitman style analyses: Artifactual correlations and adaptive evolution between humans and chimpanzees. Genome Biology and Evolution, 14(2), evac022. https://doi.org/10.1093/gbe/evac022
Tataru, P., Mollion, M., Glémin, S., & Bataillon, T. (2017). Inference of distribution of fitness effects and proportion of adaptive substitutions from polymorphism data. Genetics, 207(3), 1103-1119. https://doi.org/10.1534/genetics.117.300323
Thioulouse, J., Dray, S., Dufour, A.-B., Siberchicot, A., Jombart, T., & Pavoine, S. (2018). Multivariate Analysis of Ecological Data with ade4.
Thorsen, M., Perrone, G. G., Kristiansson, E., Traini, M., Ye, T., Dawes, I. W., … Tamás, M. J. (2009). Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. BMC Genomics, 10(1), 105. https://doi.org/10.1186/1471-2164-10-105
Venables, W. N. (2002). Modern applied statistics with S/W.N. Springer.
Wang, Q. M., Liu, W. Q., Liti, G., Wang, S. A., & Bai, F. Y. (2012). Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Molecular Ecology, 21(22), 5404-5417. https://doi.org/10.1111/j.1365-294X.2012.05732.x
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag.
Wilke, C. O. (2020). cowplot: Streamlined plot theme and plot annotations for 'ggplot2'. https://CRAN.R-project.org/package=cowplot
Yue, J.-X., Li, J., Aigrain, L., Hallin, J., Persson, K., Oliver, K., Bergström, A., Coupland, P., Warringer, J., Lagomarsino, M. C., Fischer, G., Durbin, R., & Liti, G. (2017). Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nature Genetics, 49(6), 913-924. https://doi.org/10.1038/ng.3847
Zeder, M. A. (2008). Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11597-11604. https://doi.org/10.1073/pnas.0801317105
Zhou, T., Weems, M., & Wilke, C. O. (2009). Translationally optimal codons associate with structurally sensitive sites in proteins. Molecular Biology and Evolution, 26(7), 1571-1580. https://doi.org/10.1093/molbev/msp070

Auteurs

Maximilian W D Raas (MWD)

Research Group Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, Plön, Germany.

Julien Y Dutheil (JY)

Research Group Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, Plön, Germany.
Unité Mixte de Recherche 5554 Institut des Sciences de l'Evolution, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France.

Classifications MeSH