Tuning-free and self-supervised image enhancement against ill exposure.


Journal

Optics express
ISSN: 1094-4087
Titre abrégé: Opt Express
Pays: United States
ID NLM: 101137103

Informations de publication

Date de publication:
13 Mar 2023
Historique:
medline: 10 5 2023
pubmed: 9 5 2023
entrez: 9 5 2023
Statut: ppublish

Résumé

Complex lighting conditions and the limited dynamic range of imaging devices result in captured images with ill exposure and information loss. Existing image enhancement methods based on histogram equalization, Retinex-inspired decomposition model, and deep learning suffer from manual tuning or poor generalization. In this work, we report an image enhancement method against ill exposure with self-supervised learning, enabling tuning-free correction. First, a dual illumination estimation network is constructed to estimate the illumination for under- and over-exposed areas. Thus, we get the corresponding intermediate corrected images. Second, given the intermediate corrected images with different best-exposed areas, Mertens' multi-exposure fusion strategy is utilized to fuse the intermediate corrected images to acquire a well-exposed image. The correction-fusion manner allows adaptive dealing with various types of ill-exposed images. Finally, the self-supervised learning strategy is studied which learns global histogram adjustment for better generalization. Compared to training on paired datasets, we only need ill-exposed images. This is crucial in cases where paired data is inaccessible or less than perfect. Experiments show that our method can reveal more details with better visual perception than other state-of-the-art methods. Furthermore, the weighted average scores of image naturalness matrics NIQE and BRISQUE, and contrast matrics CEIQ and NSS on five real-world image datasets are boosted by 7%, 15%, 4%, and 2%, respectively, over the recent exposure correction method.

Identifiants

pubmed: 37157585
pii: 527905
doi: 10.1364/OE.484628
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

10368-10385

Auteurs

Articles similaires

1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Cephalometry Humans Anatomic Landmarks Software Internet
Humans Artificial Intelligence Neoplasms Prognosis Image Processing, Computer-Assisted
Humans Breast Neoplasms Female Deep Learning Ultrasonography, Mammary

Classifications MeSH