Clinical significance of CTGF and Cry61 protein in extraocular muscles of strabismic patients.


Journal

Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
ISSN: 1435-702X
Titre abrégé: Graefes Arch Clin Exp Ophthalmol
Pays: Germany
ID NLM: 8205248

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 19 11 2022
accepted: 26 04 2023
revised: 22 04 2023
medline: 23 10 2023
pubmed: 10 5 2023
entrez: 10 5 2023
Statut: ppublish

Résumé

To investigate the relationship between clinical features and protein amounts of Cysteine-rich 61 (Cyr61/CCN1) and connective tissue growth factor (CTGF/CCN2), which are vital components and regulators of the extracellular matrix in resected muscles from strabismus surgery. Strabismus patients who were diagnosed with horizontal concomitant strabismus or inferior oblique overaction (IOOA) and required extraocular muscles (EOMs) resection to correct eye position were included in this study. The protein amounts were measured by enzyme-linked immunosorbent assay (ELISA) in resected EOMs. Multivariable linear regression was used to investigate the associations, adjusting for gender, age (continuous), amblyopia, and disease duration. A total of 141 muscles (including 38 lateral, 81 medial rectus, and 22 inferior oblique muscles) from 128 patients were collected in this study. The amount of Cry61 and CTGF per millimeter was significantly negatively associated with deviation angle in intermittent exotropia patients (Cry61: β, - 1.44; 95%CI, - 2.79 to - 0.10, p = 0.035; CTGF: β, - 3.14; 95%CI, - 5.06 to - 1.22, p = 0.002). The same relationship was also detected in the partially accommodative and non-accommodative esotropia patients, although it was not statistically significant (Cry61: β, - 2.40; 95%CI, - 5.05 to 0.24; p = 0.073; CTGF: β, - 3.47; 95%CI, - 9.18 to 2.87; p = 0.269). The amount of Cry61 and CTGF per millimeter showed significant associations with the degree of IOOA (p < 0.05). Taken together, our results demonstrated a significant relationship between deviation angle and protein amount of Cry61 and CTGF and implied that Cry61 and CTGF may play important roles in modulation of EOM contractility, which provide new insights into strabismus pathogenesis.

Identifiants

pubmed: 37162563
doi: 10.1007/s00417-023-06096-z
pii: 10.1007/s00417-023-06096-z
doi:

Substances chimiques

Connective Tissue Growth Factor 139568-91-5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2845-2851

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Friedman DS, Repka MX, Katz J et al (2009) Prevalence of amblyopia and strabismus in white and African American children aged 6 through 71 months the Baltimore Pediatric Eye Disease Study. Ophthalmology 116(2128–2134):e1-2. https://doi.org/10.1016/j.ophtha.2009.04.034
doi: 10.1016/j.ophtha.2009.04.034
Multi-ethnic Pediatric Eye Disease Study Group (2008) Prevalence of amblyopia and strabismus in African American and Hispanic children ages 6 to 72 months the multi-ethnic pediatric eye disease study. Ophthalmology 115:1229-1236.e1. https://doi.org/10.1016/j.ophtha.2007.08.001
doi: 10.1016/j.ophtha.2007.08.001
McKean-Cowdin R, Cotter SA, Tarczy-Hornoch K et al (2013) Prevalence of amblyopia or strabismus in asian and non-Hispanic white preschool children: multi-ethnic pediatric eye disease study. Ophthalmology 120:2117–2124. https://doi.org/10.1016/j.ophtha.2013.03.001
doi: 10.1016/j.ophtha.2013.03.001 pubmed: 23697956
Chia A, Dirani M, Chan Y-H et al (2010) Prevalence of amblyopia and strabismus in young Singaporean Chinese children. Invest Ophthalmol Vis Sci 51:3411–3417. https://doi.org/10.1167/iovs.09-4461
doi: 10.1167/iovs.09-4461 pubmed: 20207979 pmcid: 3979488
Ying G, Maguire MG, Cyert LA et al (2014) Prevalence of vision disorders by racial and ethnic group among children participating in head start. Ophthalmology 121:630–636. https://doi.org/10.1016/j.ophtha.2013.09.036
doi: 10.1016/j.ophtha.2013.09.036 pubmed: 24183422
Altick AL, Feng C-Y, Schlauch K et al (2012) Differences in gene expression between strabismic and normal human extraocular muscles. Invest Ophthalmol Vis Sci 53:5168–5177. https://doi.org/10.1167/iovs.12-9785
doi: 10.1167/iovs.12-9785 pubmed: 22786898 pmcid: 3416046
Tychsen L (2005) Can ophthalmologists repair the brain in infantile esotropia? Early surgery, stereopsis, monofixation syndrome, and the legacy of Marshall Parks. J AAPOS 9(6):510–521. https://doi.org/10.1016/j.jaapos.2005.06.007
doi: 10.1016/j.jaapos.2005.06.007 pubmed: 16414515
Fieß A, Elflein HM, Urschitz MS et al (2020) Prevalence of strabismus and its impact on vision-related quality of life: results from the German population-based Gutenberg health study. Ophthalmology 127:1113–1122. https://doi.org/10.1016/j.ophtha.2020.02.026
doi: 10.1016/j.ophtha.2020.02.026 pubmed: 32312635
Buffenn AN (2021) The impact of strabismus on psychosocial heath and quality of life: a systematic review. Surv Ophthalmol 66:1051–1064. https://doi.org/10.1016/j.survophthal.2021.03.005
doi: 10.1016/j.survophthal.2021.03.005 pubmed: 33773997
Agarwal AB, Feng C-Y, Altick AL et al (2016) Altered protein composition and gene expression in strabismic human extraocular muscles and tendons. Invest Ophthalmol Vis Sci 57:5576–5585. https://doi.org/10.1167/iovs.16-20294
doi: 10.1167/iovs.16-20294 pubmed: 27768799 pmcid: 5080916
Rodríguez MA, SandgrenHochhard K, Vicente A et al (2019) Gene expression profile of extraocular muscles following resection strabismus surgery. Exp Eye Res 182:182–193. https://doi.org/10.1016/j.exer.2019.03.022
doi: 10.1016/j.exer.2019.03.022 pubmed: 30953624
Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84:649–698. https://doi.org/10.1152/physrev.00031.2003
doi: 10.1152/physrev.00031.2003 pubmed: 15044685
Domenici-Lombardo L, Corsi M, Mencucci R et al (1992) Extraocular muscles in congenital strabismus: muscle fiber and nerve ending ultrastructure according to different regions. Ophthalmologica 205(1):29–39. https://doi.org/10.1159/000310308
doi: 10.1159/000310308 pubmed: 1436989
Al-Falki Y, Al-Shraim M, Alsabaani NA et al (2019) Ultrastructural changes of extraocular muscles in strabismus patients. Ultrastruct Pathol 43:145–153. https://doi.org/10.1080/01913123.2019.1671927
doi: 10.1080/01913123.2019.1671927 pubmed: 31570030
Shah AM, Jain K, Desai RS et al (2021) The role of increased connective tissue growth factor in the pathogenesis of oral submucous fibrosis and its malignant transformation-an immunohistochemical study. Head Neck Pathol 15:817–830. https://doi.org/10.1007/s12105-020-01270-9
doi: 10.1007/s12105-020-01270-9 pubmed: 33544386 pmcid: 8384978
Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10:945–963. https://doi.org/10.1038/nrd3599
doi: 10.1038/nrd3599 pubmed: 22129992 pmcid: 3663145
Yan L, Chaqour B (2013) Cysteine-rich protein 61 (CCN1) and connective tissue growth factor (CCN2) at the crosshairs of ocular neovascular and fibrovascular disease therapy. J Cell Commun Signal 7:253–263. https://doi.org/10.1007/s12079-013-0206-6
doi: 10.1007/s12079-013-0206-6 pubmed: 23740088 pmcid: 3889253
Lim HW, Lee JW, Hong E et al (2014) Quantitative assessment of inferior oblique muscle overaction using photographs of the cardinal positions of gaze. Am J Ophthalmol 158:793-799.e2. https://doi.org/10.1016/j.ajo.2014.06.016
doi: 10.1016/j.ajo.2014.06.016 pubmed: 24973607
Liu J, Ma AKH, So KF et al (2022) Mechanisms of electrical stimulation in eye diseases: a narrative review. Adv Ophthalmol Pract Res 2:100060. https://doi.org/10.1016/j.aopr.2022.100060
doi: 10.1016/j.aopr.2022.100060
Kawai M, Goseki T, Ishikawa H et al (2021) Characterization of the position of the extraocular muscles and orbit in acquired esotropia both at distance and near using orbital magnetic resonance imaging. PloS One 16:e0248497. https://doi.org/10.1371/journal.pone.0248497
doi: 10.1371/journal.pone.0248497 pubmed: 33711045 pmcid: 7954285
Kritikaki E, Asterling R, Ward L et al (2021) Exercise training-induced extracellular matrix protein adaptation in locomotor muscles: a systematic review. Cells 10:1022. https://doi.org/10.3390/cells10051022
doi: 10.3390/cells10051022 pubmed: 33926070 pmcid: 8146973
Lee YP, Choi DG (2020) MMPs, TIMPs and BMP-4 in medial rectus muscle obtained from intermittent exotropia patients and their clinical correlations. Acta Ophthalmol 98(1):e107–e112. https://doi.org/10.1111/aos.14217
doi: 10.1111/aos.14217 pubmed: 31421016
Wu L, Zhang S, Li X et al (2020) Integrative transcriptomics and proteomic analysis of extraocular muscles from patients with thyroid-associated ophthalmopathy. Exp Eye Res 193:107962. https://doi.org/10.1016/j.exer.2020.107962
doi: 10.1016/j.exer.2020.107962 pubmed: 32057773
Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119:4803–4810. https://doi.org/10.1242/jcs.03270
doi: 10.1242/jcs.03270 pubmed: 17130294
Kim K-H, Won JH, Cheng N, Lau LF (2018) The matricellular protein CCN1 in tissue injury repair. J Cell Commun Signal 12:273–279. https://doi.org/10.1007/s12079-018-0450-x
doi: 10.1007/s12079-018-0450-x pubmed: 29357009 pmcid: 5842204
Giusti V, Scotlandi K (2021) CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 15:545–566. https://doi.org/10.1007/s12079-021-00631-5
doi: 10.1007/s12079-021-00631-5 pubmed: 34228239 pmcid: 8642527
Anderson BC, Daniel ML, Kendall JD et al (2011) Sustained release of bone morphogenetic protein-4 in adult rabbit extraocular muscle results in decreased force and muscle size: potential for strabismus treatment. Invest Ophthalmol Vis Sci 52:4021–4029. https://doi.org/10.1167/iovs.10-6878
doi: 10.1167/iovs.10-6878 pubmed: 21357389 pmcid: 3175951

Auteurs

Xiaoning Yu (X)

Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, 1 West Lake Avenue, Hangzhou, 310009, Zhejiang Province, China.
Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, China.
Zhejiang Provincial Clinical Research Center for Eye Diseases, Hangzhou, China.
Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China.

Silu Shi (S)

Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, 1 West Lake Avenue, Hangzhou, 310009, Zhejiang Province, China.
Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, China.
Zhejiang Provincial Clinical Research Center for Eye Diseases, Hangzhou, China.
Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China.

Yilei Cui (Y)

Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, 1 West Lake Avenue, Hangzhou, 310009, Zhejiang Province, China.
Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, China.
Zhejiang Provincial Clinical Research Center for Eye Diseases, Hangzhou, China.
Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China.

Xingchao Shentu (X)

Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, 1 West Lake Avenue, Hangzhou, 310009, Zhejiang Province, China. stxc@zju.edu.cn.
Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, China. stxc@zju.edu.cn.
Zhejiang Provincial Clinical Research Center for Eye Diseases, Hangzhou, China. stxc@zju.edu.cn.
Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China. stxc@zju.edu.cn.

Zhaohui Sun (Z)

Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, 1 West Lake Avenue, Hangzhou, 310009, Zhejiang Province, China. 2199010@zju.edu.cn.
Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, China. 2199010@zju.edu.cn.
Zhejiang Provincial Clinical Research Center for Eye Diseases, Hangzhou, China. 2199010@zju.edu.cn.
Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China. 2199010@zju.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH