Sf9 Cell Metabolism Throughout the Recombinant Baculovirus and Rabies Virus-Like Particles Production in Two Culture Systems.

Insect cell metabolism Rabies virus-like particles Recombinant baculovirus Sf9 cells Stirred tank bioreactor Viral infection

Journal

Molecular biotechnology
ISSN: 1559-0305
Titre abrégé: Mol Biotechnol
Pays: Switzerland
ID NLM: 9423533

Informations de publication

Date de publication:
10 May 2023
Historique:
received: 23 09 2022
accepted: 22 04 2023
medline: 10 5 2023
pubmed: 10 5 2023
entrez: 10 5 2023
Statut: aheadofprint

Résumé

This work aimed to assess the Sf9 cell metabolism during growth, and infection steps with recombinant baculovirus bearing rabies virus proteins, to finally obtain rabies VLP in two culture systems: Schott flask (SF) and stirred tank reactor (STR). Eight assays were performed in SF and STR (four assays in each system) using serum-free SF900 III culture medium. Two non-infection growth kinetics assays and six recombinant baculovirus infection assays. The infection runs were carried out at 0.1 pfu/cell multiplicity of infection (MOI) for single baculovirus bearing rabies glycoprotein (BVG) and matrix protein (BVM) and a coinfection with both baculoviruses at MOI of 3 and 2 pfu/cell for BVG and BVM, respectively. The SF assays were done in triplicate. The glucose, glutamine, glutamate, lactate, and ammonium uptake or release specific rates were quantified over the exponential growth phase and infection stage. The highest uptake specific rate was observed for glucose (42.5 × 10

Identifiants

pubmed: 37162721
doi: 10.1007/s12033-023-00759-2
pii: 10.1007/s12033-023-00759-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2018/10538-1
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2016/22780-6
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 168539/2018-7

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Gold, S., Donnelly, C. A., Nouvellet, P., & Woodroffe, R. (2020). Rabies virus-neutralising antibodies in healthy, unvaccinated individuals: What do they mean for rabies epidemiology? PLoS Neglected Tropical Diseases. https://doi.org/10.1371/journal.pntd.0007933
doi: 10.1371/journal.pntd.0007933 pubmed: 32053628 pmcid: 7017994
Evans, J. S., Horton, D. L., Easton, A. J., Fooks, A. R., & Banyard, A. C. (2012). Rabies virus vaccines: Is there a need for a pan-lyssavirus vaccine? Vaccine, 30(52), 7447–7454. https://doi.org/10.1016/J.VACCINE.2012.10.015
doi: 10.1016/J.VACCINE.2012.10.015 pubmed: 23084854
Wunner, W. H., & Briggs, D. J. (2010). Viewpoints rabies in the 21st century. PLoS Neglected Tropical Diseases. https://doi.org/10.1371/journal.pntd.0000591
doi: 10.1371/journal.pntd.0000591 pubmed: 20361028 pmcid: 2846934
Stitz, L., et al. (2017). A thermostable messenger RNA based vaccine against rabies. PLoS Neglected Tropical Diseases. https://doi.org/10.1371/journal.pntd.0006108
doi: 10.1371/journal.pntd.0006108 pubmed: 29216187 pmcid: 5737050
Yang, D.-K., Kim, H.-H., Lee, K.-W., & Song, J.-Y. (2013). The present and future of rabies vaccine in animals. Clinical and Experimental Vaccine Research, 2(1), 19–25. https://doi.org/10.7774/CEVR.2013.2.1.19
doi: 10.7774/CEVR.2013.2.1.19 pubmed: 23596586 pmcid: 3623496
Ghorbani, A., Zare, F., Sazegari, S., Afsharifar, A., Eskandari, M. H., & Pormohammad, A. (2020). Development of a novel platform of virus-like particle (VLP)-based vaccine against COVID-19 by exposing epitopes: an immunoinformatics approach. New Microbes and New Infections. https://doi.org/10.1016/J.NMNI.2020.100786
doi: 10.1016/J.NMNI.2020.100786 pubmed: 33072338 pmcid: 7556220
Keller, S. A., Bauer, M., Manolova, V., Muntwiler, S., Saudan, P., & Bachmann, M. F. (2010). Cutting edge: Limited specialization of dendritic cell subsets for MHC class II-associated presentation of viral particles. The Journal of Immunology, 184(1), 26–29. https://doi.org/10.4049/JIMMUNOL.0901540
doi: 10.4049/JIMMUNOL.0901540 pubmed: 19949081
Tan, M., & Jiang, X. (2017). “Recent advancements in combination subunit vaccine development. Human Vaccines & Immunotherapeutics, 13(1), 180–185. https://doi.org/10.1080/21645515.2016.1229719
doi: 10.1080/21645515.2016.1229719
Jeong, H., & Seong, B. L. (2017). Exploiting virus-like particles as innovative vaccines against emerging viral infections. Journal of Microbiology, 55, 3. https://doi.org/10.1007/S12275-017-7058-3
doi: 10.1007/S12275-017-7058-3
Qian, C., et al. (2020). Recent progress on the versatility of virus-like particles. Vaccines, 8(1), 139. https://doi.org/10.3390/VACCINES8010139
doi: 10.3390/VACCINES8010139 pubmed: 32244935 pmcid: 7157238
Sokolenko, S., George, S., Wagner, A., Tuladhar, A., Andrich, J. M. S., & Aucoin, M. G. (2012). Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnology Advances, 30(3), 766–781. https://doi.org/10.1016/J.BIOTECHADV.2012.01.009
doi: 10.1016/J.BIOTECHADV.2012.01.009 pubmed: 22297133 pmcid: 7132753
Fernandes, F., Teixeira, A. P., Carinhas, N., Carrondo, M. J. T., & Alves, P. M. (2014). Insect cells as a production platform of complex virus-like particles. Expert Review of Vaccines, 12, 225–236. https://doi.org/10.1586/ERV.12.153
doi: 10.1586/ERV.12.153
Drugmand, J. C., Schneider, Y. J., & Agathos, S. N. (2012). Insect cells as factories for biomanufacturing. Biotechnology Advances, 30(5), 1140–1157. https://doi.org/10.1016/J.BIOTECHADV.2011.09.014
doi: 10.1016/J.BIOTECHADV.2011.09.014 pubmed: 21983546
Drews, M., Paalme, T., & Vilu, R. (1995). The growth and nutrient utilization of the insect cell line Spodoptera frugiperda Sf9 in batch and continuous culture. Journal of Biotechnology, 40(3), 187–198. https://doi.org/10.1016/0168-1656(95)00045-R
doi: 10.1016/0168-1656(95)00045-R
Palomares, L. A., López, S., & Ramírez, O. T. (2004). Utilization of oxygen uptake rate to assess the role of glucose and glutamine in the metabolism of infected insect cell cultures. Biochemical Engineering Journal, 19(1), 87–93. https://doi.org/10.1016/J.BEJ.2003.12.002
doi: 10.1016/J.BEJ.2003.12.002
Wong, T. K. K., Nielsen, L. K., Greenfield, P. F., & Reid, S. (1994). Relationship between oxygen uptake rate and time of infection of Sf9 insect cells infected with a recombinant baculovirus. Cytotechnology, 15(1), 157–167. https://doi.org/10.1007/BF00762390
doi: 10.1007/BF00762390 pubmed: 7765927
Bernal, V., Carinhas, N., Yokomizo, A. Y., Carrondo, M. J. T., & Alves, P. M. (2009). Cell density effect in the baculovirus-insect cells system: A quantitative analysis of energetic metabolism. Biotechnology and Bioengineering, 104(1), 162–180. https://doi.org/10.1002/BIT.22364
doi: 10.1002/BIT.22364 pubmed: 19459142
Drews, M., et al. (2000). Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells: Evidence for the presence of the nitrogen assimilation system, and a metabolic switch by 1H/15N NMR. Journal of Biotechnology, 78(1), 23–37. https://doi.org/10.1016/S0168-1656(99)00231-X
doi: 10.1016/S0168-1656(99)00231-X pubmed: 10702908
Öhman, L., Ljunggren, J., & Häggström, L. (1995). Induction of a metabolic switch in insect cells by substrate-limited fed batch cultures. Applied Microbiology and Biotechnology, 43(6), 1006–1013. https://doi.org/10.1007/BF00166917
doi: 10.1007/BF00166917 pubmed: 8590651
Cruz, H. J., Freitas, C. M., Alves, P. M., Moreira, J. L., & Carrondo, M. J. T. (2000). Effects of ammonia and lactate on growth, metabolism, and productivity of BHK cells. Enyzme and Microbial Technology, 27(1–2), 43–52. https://doi.org/10.1016/S0141-0229(00)00151-4
doi: 10.1016/S0141-0229(00)00151-4
Bédard, C., Perret, S., & Kamen, A. A. (1997). Fed-batch culture of Sf-9 cells supports 3 3 10 7 cells per ml and improves baculovirus-expressed recombinant protein yields. Biotechnology Letters, 19(7), 629–632. https://doi.org/10.1023/A:1018378529299
doi: 10.1023/A:1018378529299
Martinelle, K., Westlund, A., & Haggstrom, L. (1996). Ammonium ion transport—A cause of cell death. Cytotechnology, 22(1), 251–254. https://doi.org/10.1007/BF00353945
doi: 10.1007/BF00353945 pubmed: 22358935
Schneider, M., Marison, I. W., & von Stockar, U. (1996). The importance of ammonia in mammalian cell culture. Journal of Biotechnology, 46(3), 161–185. https://doi.org/10.1016/0168-1656(95)00196-4
doi: 10.1016/0168-1656(95)00196-4 pubmed: 8672289
Ventini-Monteiro, D., Dubois, S., Astray, R. M., Castillo, J., & Pereira, C. A. (2015). Insect cell entrapment, growth and recovering using a single-use fixed-bed bioreactor. Scaling up and recombinant protein production. Journal of Biotechnology, 216, 110–115. https://doi.org/10.1016/J.JBIOTEC.2015.10.013
doi: 10.1016/J.JBIOTEC.2015.10.013 pubmed: 26481831
Bernardino, T. C., et al. (2021). Production of rabies VLPs in insect cells by two monocistronic baculoviruses approach. Molecular Biotechnology, 63(11), 1068–1080. https://doi.org/10.1007/S12033-021-00366-Z
doi: 10.1007/S12033-021-00366-Z pubmed: 34228257
Hopkins, R. F., & Esposito, D. (2009). A rapid method for titrating baculovirus stocks using the Sf-9 Easy Titer cell line. BioTechniques, 47(3), 785–788. https://doi.org/10.2144/000113238
doi: 10.2144/000113238 pubmed: 19852765
Contreras-Gómez, A., Sánchez-Mirón, A., García-Camacho, F., Molina-Grima, E., & Chisti, Y. (2014). Protein production using the baculovirus-insect cell expression system. Biotechnology Progress, 30(1), 1–18. https://doi.org/10.1002/BTPR.1842
doi: 10.1002/BTPR.1842 pubmed: 24265112
Palomares, L. A., Mena, J. A., & Ramírez, O. T. (2012). Simultaneous expression of recombinant proteins in the insect cell-baculovirus system: Production of virus-like particles. Methods, 56(3), 389–395. https://doi.org/10.1016/J.YMETH.2012.01.004
doi: 10.1016/J.YMETH.2012.01.004 pubmed: 22300754
Wong, K. T., Peter, C. H., Greenfield, P. F., Reid, S., & Nielsen, L. K. (1996). Low multiplicity infection of insect cells with a recombinant baculovirus: The cell yield concept. Biotechnology and Bioengineering, 49(6), 659–666.
doi: 10.1002/(SICI)1097-0290(19960320)49:6<659::AID-BIT7>3.0.CO;2-N pubmed: 18626861
Guardalini, L. G., Cavalcante, P. E., Leme, J., Mello, R. G., Bernardino, T. C., Jared, S. G., Antoniazzi, M. M., Astray, R. M., Tonso, A., Fernández Núñez, E. G., & Jorge, S. A. (2022). Performance comparison of recombinant baculovirus and rabies virus-like particles production using two culture platforms. Vaccines, 11(1), 39. https://doi.org/10.3390/vaccines11010039
doi: 10.3390/vaccines11010039 pubmed: 36679884 pmcid: 9867115
Saxena, A., Byram, P. K., Singh, S. K., Chakraborty, J., Murhammer, D., & Giri, L. (2018). A structured review of baculovirus infection process: Integration of mathematical models and biomolecular information on cell–virus interaction. Journal of General Virology, 99(9), 1151–1171. https://doi.org/10.1099/JGV.0.001108/CITE/REFWORKS
doi: 10.1099/JGV.0.001108/CITE/REFWORKS pubmed: 30027883
Roche, S., & Gaudin, Y. (2002). Characterization of the Equilibrium between the Native and Fusion-Inactive Conformation of Rabies Virus Glycoprotein Indicates That the Fusion Complex Is Made of Several Trimers. Virology, 297(1), 128–135. https://doi.org/10.1006/viro.2002.1429
doi: 10.1006/viro.2002.1429 pubmed: 12083843
Gaudin, Y., Tuffereau, C., Segretain, D., Knossow, M., & Flamand, A. (1991). Reversible conformational changes and fusion activity of rabies virus glycoprotein. Journal of Virology, 65(9), 4853–4859. https://doi.org/10.1128/JVI.65.9.4853-4859.1991
doi: 10.1128/JVI.65.9.4853-4859.1991 pubmed: 1870204 pmcid: 248944
Yang, F., et al. (2020). Structural analysis of rabies virus glycoprotein reveals pH-dependent conformational changes and interactions with a neutralizing antibody. Cell Host & Microbe, 27(3), 441-453.e7. https://doi.org/10.1016/j.chom.2019.12.012
doi: 10.1016/j.chom.2019.12.012

Auteurs

Luis Giovani Oliveira Guardalini (LGO)

Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil.

Jaci Leme (J)

Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil.

Paulo Eduardo da Silva Cavalcante (PE)

Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil.

Renata Gois de Mello (RG)

Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil.

Thaissa Consoni Bernardino (TC)

Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil.

Simone Gonçalves Silva Jared (SGS)

Laboratório de Biologia Estrutural, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil.

Marta Maria Antoniazzi (MM)

Laboratório de Biologia Estrutural, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil.

Renato Mancini Astray (RM)

Laboratório Multipropósito, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil.

Aldo Tonso (A)

Laboratório de Células Animais, Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, Trav. 3, 380, São Paulo, SP, 05508-900, Brazil.

Eutimio Gustavo Fernández Núñez (EGF)

Grupo de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP, CEP 03828-000, Brazil.

Soraia Attie Calil Jorge (SAC)

Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil. soraia.jorge@butantan.gov.br.

Classifications MeSH