The potential for clinical application of automatic quantification of olfactory bulb volume in MRI scans using convolutional neural networks.
Convolutional neural networks
Deep learning
Olfactory bulb volume
Olfactory loss
Segmentation
Journal
NeuroImage. Clinical
ISSN: 2213-1582
Titre abrégé: Neuroimage Clin
Pays: Netherlands
ID NLM: 101597070
Informations de publication
Date de publication:
2023
2023
Historique:
received:
16
03
2023
accepted:
17
04
2023
medline:
19
6
2023
pubmed:
11
5
2023
entrez:
10
5
2023
Statut:
ppublish
Résumé
The olfactory bulbs (OBs) play a key role in olfactory processing; their volume is important for diagnosis, prognosis and treatment of patients with olfactory loss. Until now, measurements of OB volumes have been limited to quantification of manually segmented OBs, which is a cumbersome task and makes evaluation of OB volumes in large scale clinical studies infeasible. Hence, the aim of this study was to evaluate the potential of our previously developed automatic OB segmentation method for application in clinical practice and to relate the results to clinical outcome measures. To evaluate utilization potential of the automatic segmentation method, three data sets containing MR scans of patients with olfactory loss were included. Dataset 1 (N = 66) and 3 (N = 181) were collected at the Smell and Taste Center in Ede (NL) on a 3 T scanner; dataset 2 (N = 42) was collected at the Smell and Taste Clinic in Dresden (DE) on a 1.5 T scanner. To define the reference standard, manual annotation of the OBs was performed in Dataset 1 and 2. OBs were segmented with a method that employs two consecutive convolutional neural networks (CNNs) that the first localize the OBs in an MRI scan and subsequently segment them. In Dataset 1 and 2, the method accurately segmented the OBs, resulting in a Dice coefficient above 0.7 and average symmetrical surface distance below 0.3 mm. Volumes determined from manual and automatic segmentations showed a strong correlation (Dataset 1: r = 0.79, p < 0.001; Dataset 2: r = 0.72, p = 0.004). In addition, the method was able to recognize the absence of an OB. In Dataset 3, OB volumes computed from automatic segmentations obtained with our method were related to clinical outcome measures, i.e. duration and etiology of olfactory loss, and olfactory ability. We found that OB volume was significantly related to age of the patient, duration and etiology of olfactory loss, and olfactory ability (F(5, 172) = 11.348, p < 0.001, R
Identifiants
pubmed: 37163913
pii: S2213-1582(23)00100-6
doi: 10.1016/j.nicl.2023.103411
pmc: PMC10193118
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
103411Informations de copyright
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.