A distal lung organoid model to study interstitial lung disease, viral infection and human lung development.
Journal
Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
received:
21
10
2022
accepted:
24
02
2023
medline:
12
7
2023
pubmed:
11
5
2023
entrez:
10
5
2023
Statut:
ppublish
Résumé
Organoids have been an exciting advancement in stem cell research. Here we describe a strategy for directed differentiation of human pluripotent stem cells into distal lung organoids. This protocol recapitulates lung development by sequentially specifying human pluripotent stem cells to definitive endoderm, anterior foregut endoderm, ventral anterior foregut endoderm, lung bud organoids and finally lung organoids. The organoids take ~40 d to generate and can be maintained more than 180 d, while progressively maturing up to a stage consistent with the second trimester of human gestation. They are unique because of their branching morphology, the near absence of non-lung endodermal lineages, presence of mesenchyme and capacity to recapitulate interstitial lung diseases. This protocol can be performed by anyone familiar with cell culture techniques, is conducted in serum-free conditions and does not require lineage-specific reporters or enrichment steps. We also provide a protocol for the generation of single-cell suspensions for single-cell RNA sequencing.
Identifiants
pubmed: 37165073
doi: 10.1038/s41596-023-00827-6
pii: 10.1038/s41596-023-00827-6
doi:
Types de publication
Journal Article
Review
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2283-2312Subventions
Organisme : NHLBI NIH HHS
ID : U01 HL134760
Pays : United States
Organisme : NIH HHS
ID : S10 OD032447
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL105323
Pays : United States
Informations de copyright
© 2023. Springer Nature Limited.
Références
Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).
pubmed: 27315476
doi: 10.1016/j.cell.2016.05.082
McCauley, H. A. & Wells, J. M. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 144, 958–962 (2017).
pubmed: 28292841
pmcid: 5358106
doi: 10.1242/dev.140731
Miller, A. J. & Spence, J. R. In vitro models to study human lung development, disease and homeostasis. Physiology 32, 246–260 (2017).
pubmed: 28404740
pmcid: 6148341
doi: 10.1152/physiol.00041.2016
Basil, M. C. et al. The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell 26, 482–502 (2020).
pubmed: 32243808
pmcid: 7128675
doi: 10.1016/j.stem.2020.03.009
Herriges, M. & Morrisey, E. E. Lung development: orchestrating the generation and regeneration of a complex organ. Development 141, 502–513 (2014).
pubmed: 24449833
pmcid: 3899811
doi: 10.1242/dev.098186
Basil, M. C. et al. Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature 604, 120–126 (2022).
pubmed: 35355013
pmcid: 9297319
doi: 10.1038/s41586-022-04552-0
Habermann, A. C. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci. Adv. 6, eaba1972 (2020).
pubmed: 32832598
pmcid: 7439444
doi: 10.1126/sciadv.aba1972
Kadur Lakshminarasimha Murthy, P. et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 604, 111–119 (2022).
pubmed: 35355018
pmcid: 9169066
doi: 10.1038/s41586-022-04541-3
Morrisey, E. E. & Hogan, B. L. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev. Cell 18, 8–23 (2010).
pubmed: 20152174
pmcid: 3736813
doi: 10.1016/j.devcel.2009.12.010
Burri, P. H. Fetal and postnatal development of the lung. Annu. Rev. Physiol. 46, 617–628 (1984).
pubmed: 6370120
doi: 10.1146/annurev.ph.46.030184.003153
Nikolić, M. Z., Sun, D. & Rawlins, E. L. Human lung development: recent progress and new challenges. Development 145, dev163485 (2018).
pubmed: 30111617
pmcid: 6124546
doi: 10.1242/dev.163485
Herring, M. J., Putney, L. F., Wyatt, G., Finkbeiner, W. E. & Hyde, D. M. Growth of alveoli during postnatal development in humans based on stereological estimation. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L338–L344 (2014).
pubmed: 24907055
pmcid: 4137164
doi: 10.1152/ajplung.00094.2014
Dye, B. R. et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. eLife 5, e19732 (2016).
pubmed: 27677847
pmcid: 5089859
doi: 10.7554/eLife.19732
Dye, B. R. et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4, e05098 (2015).
pubmed: 25803487
pmcid: 4370217
doi: 10.7554/eLife.05098
Nikolic, M. Z. et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. eLife 6, e26575 (2017).
pubmed: 28665271
pmcid: 5555721
doi: 10.7554/eLife.26575
Dekkers, J. F. et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8, 344ra84 (2016).
pubmed: 27334259
doi: 10.1126/scitranslmed.aad8278
Salahudeen, A. A. et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature 588, 670–675 (2020).
pubmed: 33238290
pmcid: 8003326
doi: 10.1038/s41586-020-3014-1
Lamers, M. M. et al. An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells. EMBO J. 40, e105912 (2021).
pubmed: 33283287
pmcid: 7883112
doi: 10.15252/embj.2020105912
Jacob, A. et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell 21, 472–488.e10 (2017).
pubmed: 28965766
pmcid: 5755620
doi: 10.1016/j.stem.2017.08.014
Chen, Y. W. et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat. Cell Biol. 19, 542–549 (2017).
pubmed: 28436965
pmcid: 5777163
doi: 10.1038/ncb3510
Carvalho, A. L. R. T. de et al. Glycogen synthase kinase 3 induces multilineage maturation of human pluripotent stem cell-derived lung progenitors in 3D culture. Development 146, dev171652 (2019).
pubmed: 30578291
pmcid: 6361135
Miller, A. J. et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat. Protoc. 14, 518–540 (2019).
pubmed: 30664680
pmcid: 6531049
doi: 10.1038/s41596-018-0104-8
Hawkins, F. J. et al. Derivation of airway basal stem cells from human pluripotent stem cells. Cell Stem Cell 28, 79–95.e8 (2021).
pubmed: 33098807
doi: 10.1016/j.stem.2020.09.017
Gotoh, S. et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep. 3, 394–403 (2014).
doi: 10.1016/j.stemcr.2014.07.005
Masui, A., Hirai, T. & Gotoh, S. Perspectives of future lung toxicology studies using human pluripotent stem cells. Arch. Toxicol. 96, 389–402 (2022).
pubmed: 34973109
pmcid: 8720162
doi: 10.1007/s00204-021-03188-9
Konishi, S. et al. Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Rep. 6, 18–25 (2016).
doi: 10.1016/j.stemcr.2015.11.010
Porotto, M. et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio 10, e00723-19 (2019).
pubmed: 31064833
pmcid: 6509192
doi: 10.1128/mBio.00723-19
Strikoudis, A. et al. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep. 27, 3709–3723.e5 (2019).
pubmed: 31216486
pmcid: 6594401
doi: 10.1016/j.celrep.2019.05.077
Green, M. D. et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol. 29, 267–272 (2011).
pubmed: 21358635
pmcid: 4866999
doi: 10.1038/nbt.1788
Huang, S. X. et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol. 32, 84–91 (2014).
pubmed: 24291815
doi: 10.1038/nbt.2754
Roost, M. S. et al. KeyGenes, a tool to probe tissue differentiation using a human fetal transcriptional atlas. Stem Cell Rep. 4, 1112–1124 (2015).
doi: 10.1016/j.stemcr.2015.05.002
Hogan, B. L. et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123–138 (2014).
pubmed: 25105578
pmcid: 4212493
doi: 10.1016/j.stem.2014.07.012
Renzoni, E. A., Poletti, V. & Mackintosh, J. A. Disease pathology in fibrotic interstitial lung disease: is it all about usual interstitial pneumonia? Lancet 398, 1437–1449 (2021).
pubmed: 34499865
doi: 10.1016/S0140-6736(21)01961-9
Lederer, D. J. & Martinez, F. J. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 378, 1811–1823 (2018).
doi: 10.1056/NEJMra1705751
Katzen, J. & Beers, M. F. Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J. Clin. Invest. https://doi.org/10.1172/jci139519 (2020).
doi: 10.1172/jci139519
pubmed: 32870817
pmcid: 7524463
Armanios, M. Syndromes of telomere shortening. Annu. Rev. Genomics Hum. Genet. 10, 45–61 (2009).
pubmed: 19405848
pmcid: 2818564
doi: 10.1146/annurev-genom-082908-150046
Armanios, M. Telomerase mutations and the pulmonary fibrosis-bone marrow failure syndrome complex. N. Engl. J. Med. 367, 384 (2012).
pubmed: 22830481
doi: 10.1056/NEJMc1206730
Armanios, M. Y. et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356, 1317–1326 (2007).
pubmed: 17392301
doi: 10.1056/NEJMoa066157
Garcia, C. K. Running short on time: lung transplant evaluation for telomere-related pulmonary fibrosis. Chest 147, 1450–1452 (2015).
pubmed: 26033121
pmcid: 5395048
doi: 10.1378/chest.15-0077
Alder, J. K. & Armanios, M. Telomere-mediated lung disease. Physiol. Rev. https://doi.org/10.1152/physrev.00046.2021 (2022).
doi: 10.1152/physrev.00046.2021
pubmed: 35532056
pmcid: 9306791
Kelich, J. et al. Telomere dysfunction implicates POT1 in patients with idiopathic pulmonary fibrosis. J. Exp. Med. 219, e20211681 (2022).
pubmed: 35420632
pmcid: 9014792
doi: 10.1084/jem.20211681
Dodson, L. M. et al. From incomplete penetrance with normal telomere length to severe disease and telomere shortening in a family with monoallelic and biallelic PARN pathogenic variants. Hum. Mutat. 40, 2414–2429 (2019).
pubmed: 31448843
pmcid: 6874886
doi: 10.1002/humu.23898
Stuart, B. D. et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Genet. 47, 512–517 (2015).
pubmed: 25848748
pmcid: 4414891
doi: 10.1038/ng.3278
Petrovski, S. et al. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 196, 82–93 (2017).
pubmed: 28099038
pmcid: 5519963
doi: 10.1164/rccm.201610-2088OC
Barkauskas, C. E. et al. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. https://doi.org/10.1172/JCI68782 (2013).
doi: 10.1172/JCI68782
pubmed: 23921127
pmcid: 3696553
Moeller, A., Ask, K., Warburton, D., Gauldie, J. & Kolb, M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol. 40, 362–382 (2008).
pubmed: 17936056
doi: 10.1016/j.biocel.2007.08.011
Matute-Bello, G., Frevert, C. W. & Martin, T. R. Animal models of acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L379–L399 (2008).
pubmed: 18621912
pmcid: 2536793
doi: 10.1152/ajplung.00010.2008
Mulugeta, S., Nureki, S. & Beers, M. F. Lost after translation: insights from pulmonary surfactant for understanding the role of alveolar epithelial dysfunction and cellular quality control in fibrotic lung disease. Am. J. Physiol. Lung Cell Mol. Physiol. 309, L507–L525 (2015).
pubmed: 26186947
pmcid: 4572416
doi: 10.1152/ajplung.00139.2015
Florin, T. A., Plint, A. C. & Zorc, J. J. Viral bronchiolitis. Lancet 389, 211–224 (2017).
pubmed: 27549684
doi: 10.1016/S0140-6736(16)30951-5
Firth, A. L. et al. Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 111, E1723–E1730 (2014).
pubmed: 24706852
pmcid: 4035971
doi: 10.1073/pnas.1403470111
Yamamoto, Y. et al. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat. Methods 14, 1097–1106 (2017).
pubmed: 28967890
doi: 10.1038/nmeth.4448
Goss, A. M. et al. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev. Cell 17, 290–298 (2009).
pubmed: 19686689
pmcid: 2763331
doi: 10.1016/j.devcel.2009.06.005
Chapman, D. L. et al. Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev. Dyn. 206, 379–390 (1996).
pubmed: 8853987
doi: 10.1002/(SICI)1097-0177(199608)206:4<379::AID-AJA4>3.0.CO;2-F
McCauley, K. B. et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 20, 844–857.e6 (2017).
pubmed: 28366587
pmcid: 5457392
doi: 10.1016/j.stem.2017.03.001
Hawkins, F. et al. Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells. J. Clin. Invest. 127, 2277–2294 (2017).
pubmed: 28463226
pmcid: 5451263
doi: 10.1172/JCI89950
Jacob, A. et al. Derivation of self-renewing lung alveolar epithelial type II cells from human pluripotent stem cells. Nat. Protoc. 14, 3303–3332 (2019).
pubmed: 31732721
pmcid: 7275645
doi: 10.1038/s41596-019-0220-0
Rodrigues Toste de Carvalho, A. L. et al. The in vitro multilineage differentiation and maturation of lung and airway cells from human pluripotent stem cell-derived lung progenitors in 3D. Nat. Protoc. 16, 1802–1829 (2021).
pubmed: 33649566
doi: 10.1038/s41596-020-00476-z
Kanagaki, S. et al. Directed induction of alveolar type I cells derived from pluripotent stem cells via Wnt signaling inhibition. Stem Cells 39, 156–169 (2021).
pubmed: 33241896
doi: 10.1002/stem.3302
Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).
pubmed: 19625615
pmcid: 2714281
doi: 10.1073/pnas.0906850106
Butler, C. R. et al. Rapid expansion of human epithelial stem cells suitable for airway tissue engineering. Am. J. Respir. Crit. Care Med. 194, 156–168 (2016).
pubmed: 26840431
pmcid: 5003214
doi: 10.1164/rccm.201507-1414OC
Huang, S. X. et al. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat. Protoc. 10, 413–425 (2015).
pubmed: 25654758
pmcid: 4654940
doi: 10.1038/nprot.2015.023
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).
pubmed: 32747759
doi: 10.1038/s41587-020-0591-3
Sherwood, R. I., Chen, T. Y. & Melton, D. A. Transcriptional dynamics of endodermal organ formation. Dev. Dyn. 238, 29–42 (2009).
pubmed: 19097184
pmcid: 3756511
doi: 10.1002/dvdy.21810
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179
pmcid: 6700744
doi: 10.1038/nbt.4096
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423
pmcid: 6927181
doi: 10.1186/s13059-019-1874-1
Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685–691 (2019).
pubmed: 31061482
pmcid: 6551256
doi: 10.1038/s41587-019-0113-3