A distal lung organoid model to study interstitial lung disease, viral infection and human lung development.


Journal

Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307

Informations de publication

Date de publication:
07 2023
Historique:
received: 21 10 2022
accepted: 24 02 2023
medline: 12 7 2023
pubmed: 11 5 2023
entrez: 10 5 2023
Statut: ppublish

Résumé

Organoids have been an exciting advancement in stem cell research. Here we describe a strategy for directed differentiation of human pluripotent stem cells into distal lung organoids. This protocol recapitulates lung development by sequentially specifying human pluripotent stem cells to definitive endoderm, anterior foregut endoderm, ventral anterior foregut endoderm, lung bud organoids and finally lung organoids. The organoids take ~40 d to generate and can be maintained more than 180 d, while progressively maturing up to a stage consistent with the second trimester of human gestation. They are unique because of their branching morphology, the near absence of non-lung endodermal lineages, presence of mesenchyme and capacity to recapitulate interstitial lung diseases. This protocol can be performed by anyone familiar with cell culture techniques, is conducted in serum-free conditions and does not require lineage-specific reporters or enrichment steps. We also provide a protocol for the generation of single-cell suspensions for single-cell RNA sequencing.

Identifiants

pubmed: 37165073
doi: 10.1038/s41596-023-00827-6
pii: 10.1038/s41596-023-00827-6
doi:

Types de publication

Journal Article Review Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2283-2312

Subventions

Organisme : NHLBI NIH HHS
ID : U01 HL134760
Pays : United States
Organisme : NIH HHS
ID : S10 OD032447
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL105323
Pays : United States

Informations de copyright

© 2023. Springer Nature Limited.

Références

Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).
pubmed: 27315476 doi: 10.1016/j.cell.2016.05.082
McCauley, H. A. & Wells, J. M. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 144, 958–962 (2017).
pubmed: 28292841 pmcid: 5358106 doi: 10.1242/dev.140731
Miller, A. J. & Spence, J. R. In vitro models to study human lung development, disease and homeostasis. Physiology 32, 246–260 (2017).
pubmed: 28404740 pmcid: 6148341 doi: 10.1152/physiol.00041.2016
Basil, M. C. et al. The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell 26, 482–502 (2020).
pubmed: 32243808 pmcid: 7128675 doi: 10.1016/j.stem.2020.03.009
Herriges, M. & Morrisey, E. E. Lung development: orchestrating the generation and regeneration of a complex organ. Development 141, 502–513 (2014).
pubmed: 24449833 pmcid: 3899811 doi: 10.1242/dev.098186
Basil, M. C. et al. Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature 604, 120–126 (2022).
pubmed: 35355013 pmcid: 9297319 doi: 10.1038/s41586-022-04552-0
Habermann, A. C. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci. Adv. 6, eaba1972 (2020).
pubmed: 32832598 pmcid: 7439444 doi: 10.1126/sciadv.aba1972
Kadur Lakshminarasimha Murthy, P. et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 604, 111–119 (2022).
pubmed: 35355018 pmcid: 9169066 doi: 10.1038/s41586-022-04541-3
Morrisey, E. E. & Hogan, B. L. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev. Cell 18, 8–23 (2010).
pubmed: 20152174 pmcid: 3736813 doi: 10.1016/j.devcel.2009.12.010
Burri, P. H. Fetal and postnatal development of the lung. Annu. Rev. Physiol. 46, 617–628 (1984).
pubmed: 6370120 doi: 10.1146/annurev.ph.46.030184.003153
Nikolić, M. Z., Sun, D. & Rawlins, E. L. Human lung development: recent progress and new challenges. Development 145, dev163485 (2018).
pubmed: 30111617 pmcid: 6124546 doi: 10.1242/dev.163485
Herring, M. J., Putney, L. F., Wyatt, G., Finkbeiner, W. E. & Hyde, D. M. Growth of alveoli during postnatal development in humans based on stereological estimation. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L338–L344 (2014).
pubmed: 24907055 pmcid: 4137164 doi: 10.1152/ajplung.00094.2014
Dye, B. R. et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. eLife 5, e19732 (2016).
pubmed: 27677847 pmcid: 5089859 doi: 10.7554/eLife.19732
Dye, B. R. et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4, e05098 (2015).
pubmed: 25803487 pmcid: 4370217 doi: 10.7554/eLife.05098
Nikolic, M. Z. et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. eLife 6, e26575 (2017).
pubmed: 28665271 pmcid: 5555721 doi: 10.7554/eLife.26575
Dekkers, J. F. et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8, 344ra84 (2016).
pubmed: 27334259 doi: 10.1126/scitranslmed.aad8278
Salahudeen, A. A. et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature 588, 670–675 (2020).
pubmed: 33238290 pmcid: 8003326 doi: 10.1038/s41586-020-3014-1
Lamers, M. M. et al. An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells. EMBO J. 40, e105912 (2021).
pubmed: 33283287 pmcid: 7883112 doi: 10.15252/embj.2020105912
Jacob, A. et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell 21, 472–488.e10 (2017).
pubmed: 28965766 pmcid: 5755620 doi: 10.1016/j.stem.2017.08.014
Chen, Y. W. et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat. Cell Biol. 19, 542–549 (2017).
pubmed: 28436965 pmcid: 5777163 doi: 10.1038/ncb3510
Carvalho, A. L. R. T. de et al. Glycogen synthase kinase 3 induces multilineage maturation of human pluripotent stem cell-derived lung progenitors in 3D culture. Development 146, dev171652 (2019).
pubmed: 30578291 pmcid: 6361135
Miller, A. J. et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat. Protoc. 14, 518–540 (2019).
pubmed: 30664680 pmcid: 6531049 doi: 10.1038/s41596-018-0104-8
Hawkins, F. J. et al. Derivation of airway basal stem cells from human pluripotent stem cells. Cell Stem Cell 28, 79–95.e8 (2021).
pubmed: 33098807 doi: 10.1016/j.stem.2020.09.017
Gotoh, S. et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep. 3, 394–403 (2014).
doi: 10.1016/j.stemcr.2014.07.005
Masui, A., Hirai, T. & Gotoh, S. Perspectives of future lung toxicology studies using human pluripotent stem cells. Arch. Toxicol. 96, 389–402 (2022).
pubmed: 34973109 pmcid: 8720162 doi: 10.1007/s00204-021-03188-9
Konishi, S. et al. Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Rep. 6, 18–25 (2016).
doi: 10.1016/j.stemcr.2015.11.010
Porotto, M. et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio 10, e00723-19 (2019).
pubmed: 31064833 pmcid: 6509192 doi: 10.1128/mBio.00723-19
Strikoudis, A. et al. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep. 27, 3709–3723.e5 (2019).
pubmed: 31216486 pmcid: 6594401 doi: 10.1016/j.celrep.2019.05.077
Green, M. D. et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol. 29, 267–272 (2011).
pubmed: 21358635 pmcid: 4866999 doi: 10.1038/nbt.1788
Huang, S. X. et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol. 32, 84–91 (2014).
pubmed: 24291815 doi: 10.1038/nbt.2754
Roost, M. S. et al. KeyGenes, a tool to probe tissue differentiation using a human fetal transcriptional atlas. Stem Cell Rep. 4, 1112–1124 (2015).
doi: 10.1016/j.stemcr.2015.05.002
Hogan, B. L. et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123–138 (2014).
pubmed: 25105578 pmcid: 4212493 doi: 10.1016/j.stem.2014.07.012
Renzoni, E. A., Poletti, V. & Mackintosh, J. A. Disease pathology in fibrotic interstitial lung disease: is it all about usual interstitial pneumonia? Lancet 398, 1437–1449 (2021).
pubmed: 34499865 doi: 10.1016/S0140-6736(21)01961-9
Lederer, D. J. & Martinez, F. J. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 378, 1811–1823 (2018).
doi: 10.1056/NEJMra1705751
Katzen, J. & Beers, M. F. Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J. Clin. Invest. https://doi.org/10.1172/jci139519 (2020).
doi: 10.1172/jci139519 pubmed: 32870817 pmcid: 7524463
Armanios, M. Syndromes of telomere shortening. Annu. Rev. Genomics Hum. Genet. 10, 45–61 (2009).
pubmed: 19405848 pmcid: 2818564 doi: 10.1146/annurev-genom-082908-150046
Armanios, M. Telomerase mutations and the pulmonary fibrosis-bone marrow failure syndrome complex. N. Engl. J. Med. 367, 384 (2012).
pubmed: 22830481 doi: 10.1056/NEJMc1206730
Armanios, M. Y. et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356, 1317–1326 (2007).
pubmed: 17392301 doi: 10.1056/NEJMoa066157
Garcia, C. K. Running short on time: lung transplant evaluation for telomere-related pulmonary fibrosis. Chest 147, 1450–1452 (2015).
pubmed: 26033121 pmcid: 5395048 doi: 10.1378/chest.15-0077
Alder, J. K. & Armanios, M. Telomere-mediated lung disease. Physiol. Rev. https://doi.org/10.1152/physrev.00046.2021 (2022).
doi: 10.1152/physrev.00046.2021 pubmed: 35532056 pmcid: 9306791
Kelich, J. et al. Telomere dysfunction implicates POT1 in patients with idiopathic pulmonary fibrosis. J. Exp. Med. 219, e20211681 (2022).
pubmed: 35420632 pmcid: 9014792 doi: 10.1084/jem.20211681
Dodson, L. M. et al. From incomplete penetrance with normal telomere length to severe disease and telomere shortening in a family with monoallelic and biallelic PARN pathogenic variants. Hum. Mutat. 40, 2414–2429 (2019).
pubmed: 31448843 pmcid: 6874886 doi: 10.1002/humu.23898
Stuart, B. D. et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Genet. 47, 512–517 (2015).
pubmed: 25848748 pmcid: 4414891 doi: 10.1038/ng.3278
Petrovski, S. et al. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 196, 82–93 (2017).
pubmed: 28099038 pmcid: 5519963 doi: 10.1164/rccm.201610-2088OC
Barkauskas, C. E. et al. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. https://doi.org/10.1172/JCI68782 (2013).
doi: 10.1172/JCI68782 pubmed: 23921127 pmcid: 3696553
Moeller, A., Ask, K., Warburton, D., Gauldie, J. & Kolb, M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol. 40, 362–382 (2008).
pubmed: 17936056 doi: 10.1016/j.biocel.2007.08.011
Matute-Bello, G., Frevert, C. W. & Martin, T. R. Animal models of acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L379–L399 (2008).
pubmed: 18621912 pmcid: 2536793 doi: 10.1152/ajplung.00010.2008
Mulugeta, S., Nureki, S. & Beers, M. F. Lost after translation: insights from pulmonary surfactant for understanding the role of alveolar epithelial dysfunction and cellular quality control in fibrotic lung disease. Am. J. Physiol. Lung Cell Mol. Physiol. 309, L507–L525 (2015).
pubmed: 26186947 pmcid: 4572416 doi: 10.1152/ajplung.00139.2015
Florin, T. A., Plint, A. C. & Zorc, J. J. Viral bronchiolitis. Lancet 389, 211–224 (2017).
pubmed: 27549684 doi: 10.1016/S0140-6736(16)30951-5
Firth, A. L. et al. Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 111, E1723–E1730 (2014).
pubmed: 24706852 pmcid: 4035971 doi: 10.1073/pnas.1403470111
Yamamoto, Y. et al. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat. Methods 14, 1097–1106 (2017).
pubmed: 28967890 doi: 10.1038/nmeth.4448
Goss, A. M. et al. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev. Cell 17, 290–298 (2009).
pubmed: 19686689 pmcid: 2763331 doi: 10.1016/j.devcel.2009.06.005
Chapman, D. L. et al. Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev. Dyn. 206, 379–390 (1996).
pubmed: 8853987 doi: 10.1002/(SICI)1097-0177(199608)206:4<379::AID-AJA4>3.0.CO;2-F
McCauley, K. B. et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 20, 844–857.e6 (2017).
pubmed: 28366587 pmcid: 5457392 doi: 10.1016/j.stem.2017.03.001
Hawkins, F. et al. Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells. J. Clin. Invest. 127, 2277–2294 (2017).
pubmed: 28463226 pmcid: 5451263 doi: 10.1172/JCI89950
Jacob, A. et al. Derivation of self-renewing lung alveolar epithelial type II cells from human pluripotent stem cells. Nat. Protoc. 14, 3303–3332 (2019).
pubmed: 31732721 pmcid: 7275645 doi: 10.1038/s41596-019-0220-0
Rodrigues Toste de Carvalho, A. L. et al. The in vitro multilineage differentiation and maturation of lung and airway cells from human pluripotent stem cell-derived lung progenitors in 3D. Nat. Protoc. 16, 1802–1829 (2021).
pubmed: 33649566 doi: 10.1038/s41596-020-00476-z
Kanagaki, S. et al. Directed induction of alveolar type I cells derived from pluripotent stem cells via Wnt signaling inhibition. Stem Cells 39, 156–169 (2021).
pubmed: 33241896 doi: 10.1002/stem.3302
Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).
pubmed: 19625615 pmcid: 2714281 doi: 10.1073/pnas.0906850106
Butler, C. R. et al. Rapid expansion of human epithelial stem cells suitable for airway tissue engineering. Am. J. Respir. Crit. Care Med. 194, 156–168 (2016).
pubmed: 26840431 pmcid: 5003214 doi: 10.1164/rccm.201507-1414OC
Huang, S. X. et al. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat. Protoc. 10, 413–425 (2015).
pubmed: 25654758 pmcid: 4654940 doi: 10.1038/nprot.2015.023
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).
pubmed: 32747759 doi: 10.1038/s41587-020-0591-3
Sherwood, R. I., Chen, T. Y. & Melton, D. A. Transcriptional dynamics of endodermal organ formation. Dev. Dyn. 238, 29–42 (2009).
pubmed: 19097184 pmcid: 3756511 doi: 10.1002/dvdy.21810
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179 pmcid: 6700744 doi: 10.1038/nbt.4096
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423 pmcid: 6927181 doi: 10.1186/s13059-019-1874-1
Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685–691 (2019).
pubmed: 31061482 pmcid: 6551256 doi: 10.1038/s41587-019-0113-3

Auteurs

Ivana Matkovic Leko (I)

Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.

Remy T Schneider (RT)

Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.

Tania A Thimraj (TA)

Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.

Nadine Schrode (N)

Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
The Center for Advanced Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Daniel Beitler (D)

Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.

Hsiao-Yun Liu (HY)

Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.

Kristin Beaumont (K)

Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
The Center for Advanced Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Ya-Wen Chen (YW)

Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. yawen.chen@mssm.edu.
Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. yawen.chen@mssm.edu.
Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. yawen.chen@mssm.edu.
Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. yawen.chen@mssm.edu.

Hans-Willem Snoeck (HW)

Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA. hs2680@columbia.edu.
Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA. hs2680@columbia.edu.
Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA. hs2680@columbia.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH