Phantom-based assessment of motion and needle targeting accuracy of robotic devices for magnetic resonance imaging-guided needle biopsy.
MRI-guided
agar phantoms
breast biopsy
motion accuracy
needle targeting
robotic device
Journal
The international journal of medical robotics + computer assisted surgery : MRCAS
ISSN: 1478-596X
Titre abrégé: Int J Med Robot
Pays: England
ID NLM: 101250764
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
revised:
18
04
2023
received:
16
11
2022
accepted:
24
04
2023
medline:
5
9
2023
pubmed:
11
5
2023
entrez:
11
5
2023
Statut:
ppublish
Résumé
The current study proposes simple methods for assessing the performance of robotic devices intended for Magnetic Resonance Imaging (MRI)-guided needle biopsy. In-house made agar-based breast phantoms containing biopsy targets served as the main tool in the evaluation process of an MRI compatible positioning device comprising a needle navigator. The motion accuracy of mechanical stages was assessed by calliper measurements. Laboratory evaluation of needle targeting included a repeatability phantom test and a laser-based method. The accuracy and repeatability of needle targeting was also assessed by MRI. The maximum error of linear motion for steps up to 10 mm was 0.1 mm. Needle navigation relative to the phantom and alignment with the various biopsy targets were performed successfully in both the laboratory and MRI settings. The proposed biopsy phantoms offered tissue-like signal in MRI and good haptic feedback during needle insertion. The proposed methods could be valuable in the process of validating the accuracy of MRI-guided biopsy robotic devices in both laboratory and real environments.
Sections du résumé
BACKGROUND
BACKGROUND
The current study proposes simple methods for assessing the performance of robotic devices intended for Magnetic Resonance Imaging (MRI)-guided needle biopsy.
METHODS
METHODS
In-house made agar-based breast phantoms containing biopsy targets served as the main tool in the evaluation process of an MRI compatible positioning device comprising a needle navigator. The motion accuracy of mechanical stages was assessed by calliper measurements. Laboratory evaluation of needle targeting included a repeatability phantom test and a laser-based method. The accuracy and repeatability of needle targeting was also assessed by MRI.
RESULTS
RESULTS
The maximum error of linear motion for steps up to 10 mm was 0.1 mm. Needle navigation relative to the phantom and alignment with the various biopsy targets were performed successfully in both the laboratory and MRI settings. The proposed biopsy phantoms offered tissue-like signal in MRI and good haptic feedback during needle insertion.
CONCLUSIONS
CONCLUSIONS
The proposed methods could be valuable in the process of validating the accuracy of MRI-guided biopsy robotic devices in both laboratory and real environments.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2526Subventions
Organisme : Research and Innovation Foundation
Organisme : FUSROBOT
ID : ENTERPRISES/0618/0016
Organisme : SOUNDPET
ID : INTEGRATED/0918/0008
Organisme : MRBREASTBIO
ID : CONCEPT/0521/0040
Informations de copyright
© 2023 The Authors. The International Journal of Medical Robotics and Computer Assisted Surgery published by John Wiley & Sons Ltd.
Références
Siepel FJ, Maris B, Welleweerd MK, Groenhuis V, Fiorini P, Stramigioli S. Needle and biopsy robots: a review. Curr Robot Rep. 2021;2(1):73-84. https://doi.org/10.1007/s43154-020-00042-1
Unger M, Berger J, Melzer A. Robot-assisted image-guided interventions. Front Robot AI. 2021;8:1-7. https://doi.org/10.3389/frobt.2021.664622
Kratchman LB, Rahman MM, Saunders JR, Swaney PJ, Webster RJ. Toward robotic needle steering in lung biopsy: a tendon-actuated approach. In: Proceedings of SPIE - The International Society for Optical Engineering; 2011. https://doi.org/10.1117/12.878792
Groenhuis V, Siepel FJ, Veltman J, van Zandwijk JK, Stramigioli S. Stormram 4: an MR safe robotic system for breast biopsy. Ann Biomed Eng. 2018;46(10):1686-1696. https://doi.org/10.1007/s10439-018-2051-5
Xu H, Lasso A, Vikal S, et al. MRI-guided robotic prostate biopsy: a clinical accuracy validation. Med Image Comput Comput Assist Interv. 2010;13:383-391. https://doi.org/10.1007/978-3-642-15711-0_48
Schulz B, Eichler K, Al-Butmeh F, et al. Computed tomography guided percutaneous liver biopsy using a robotic assistance device-a corpse study. Open J Radiol. 2015;05(02):84-91. https://doi.org/10.4236/ojrad.2015.52014
World Health Organization (WHO). Breast cancer. Source: Globocan 2020. Accessed October 11, 2022. https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf
Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer Targets Ther. 2019;11:151-164. https://doi.org/10.2147/BCTT.S176070
Apesteguía L, Pina LJ. Ultrasound-guided core-needle biopsy of breast lesions. Insights Imaging. 2011;2(4):493-500. https://doi.org/10.1007/s13244-011-0090-7
Megali G, Tonet O, Stefanini C, et al. A computer-assisted robotic ultrasound-guided biopsy system for video-assisted surgery. Lect Notes Comput Sci. 2001;2208:343-350. https://doi.org/10.1007/3-540-45468-3_41
Smith WL, Surry KJM, Mills GR, Downey DB, Fenster A. Three-dimensional ultrasound-guided core needle breast biopsy. Ultrasound Med Biol. 2001;27(8):1025-1034. https://doi.org/10.1016/s0301-5629(01)00396-9
Abayazid M, Moreira P, Shahriari N, Patil S, Alterovitz R, Misra S. Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces. Med Eng Phys. 2015;37(1):145-150. https://doi.org/10.1016/j.medengphy.2014.10.005
Welleweerd MK, Siepel FJ, Groenhuis V, Veltman J, Stramigioli S. Design of an end-effector for robot-assisted ultrasound-guided breast biopsies. Int J Comput Assist Radiol Surg. 2020;15(4):681-690. https://doi.org/10.1007/s11548-020-02122-1
Sommerich CM, Lavender SA, Evans K, et al. Collaborating with cardiac sonographers to develop work-related musculoskeletal disorder interventions. Ergonomics. 2016;59(9):1193-1204. https://doi.org/10.1080/00140139.2015.1116613
HOLOGIC. Affirm breast biopsy guidance system. Accessed October 25, 2022. https://www.hologic.com/hologic-products/breast-health-solutions/affirm-breast-biopsy-guidance-system
HOLOGIC. Affirm prone breast biopsy system. Accessed October 25, 2022. https://www.affirmpronebiopsy.com/
Saslow D, Boetes C, Burke W, et al. American cancer society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75-89. https://doi.org/10.1097/01.ogx.0000269073.50925.38
LaTrenta LR, Menell JH, Morris EA, Abramson AF, Dershaw DDLL, Liberman L. Breast lesions detected with MR imaging: utility and histopathologic importance of identification with US. Radiology. 2003;227(3):856-861. https://doi.org/10.1148/radiol.2273012210
Yang B, Roys S, Tan U, et al. Design, development, and evaluation of a master - slave surgical system for breast biopsy under continuous MRI. Int J Rob Res. 2014;33(4):616-630. https://doi.org/10.1177/0278364913500365
Chan KG, Fielding T, Anvari M. An image-guided automated robot for MRI breast biopsy. Int J Med Robot Comput Assist Surg. 2016;12(3):461-477. https://doi.org/10.1002/rcs
Park SB, Kim J-G, Lim K-W, et al. A magnetic resonance image-guided breast needle intervention robot system: overview and design considerations. Int J Comput Assist Radiol Surg. 2017;12(8):1319-1331. https://doi.org/10.1007/s11548-017-1528-2
Antoniou A, Drakos T, Giannakou M, et al. Simple methods to test the accuracy of MRgFUS robotic systems. Int J Med Robot Comput Assist Surg. 2021;17(4):e2287. https://doi.org/10.1002/rcs.2287
Giannakou M, Yiallouras C, Menikou G, Ioannides C, Damianou C. MRI-guided frameless biopsy robotic system with the inclusion of unfocused ultrasound transducer for brain cancer ablation. Int J Med Robot Comput Assist Surg. 2019;15(1):1-9. https://doi.org/10.1002/rcs.1951
Patriciu A, Petrisor D, Muntener M, Mazilu D, Schär M, Stoianovici D. Automatic brachytherapy seed placement under MRI guidance. IEEE Trans Biomed Eng. 2007;54(8):1499-1506. https://doi.org/10.1109/TBME.2007.900816
Patel N, Yan J, Monfaredi R, Sharma K, Cleary K, Iordachita I. Preclinical evaluation of an integrated robotic system for magnetic resonance imaging guided shoulder arthrography. Med Imaging. 2019;6(2):025006. https://doi.org/10.1117/1.JMI.6.2.025006
Dou H, Jiang S, Yang Z, Sun L, Ma X, Huo B. Design and validation of a CT-guided robotic system for lung cancer brachytherapy. Med Phys. 2017;44(9):4828-4837. https://doi.org/10.1002/mp.12435
Tavallaei MA, Johnson PM, Liu J, Drangova M. Design and evaluation of an MRI-compatible linear motion stage. Med Phys. 2016;43(1):62-71. https://doi.org/10.1118/1.4937780
Koseki Y, Washio T, Chinzei K, Iseki H. Endoscope manipulator for trans-nasal neurosurgery, optimized for and compatible to vertical field open MRI. In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention-MICCAI 2002: 5th International Conference Tokyo, Japan, September 25-28. Vol 2488. Springer; 2002:114-121.
Ultrasound-guided breast biopsy phantom | products: patient simulators for diagnostic training. Kyotokagaku Co., Ltd. Kyotokagaku.com. Accessed April 30, 2023. https://www.kyotokagaku.com/products/detail01/us-9.html
Stereotactic needle biopsy phantom - CIRS. CIRS. Accessed April 30, 2023. https://www.cirsinc.com/products/mammography/stereotactic-needle-biopsy-phantom/
Multi-modality breast biopsy and sonographic trainer - CIRS. CIRS. Accessed April 30, 2023. https://www.cirsinc.com/products/ultrasound/zerdine-hydrogel/multi-modality-breast-biopsy-and-sonographic-trainer/
Sun nuclear breast biopsy Phantoms (GammexTM technology) - sun nuclear. Sunnuclear.com. Accessed April 30, 2023. https://www.sunnuclear.com/products/breast-biopsy-phantom-s
Ng SY, Lin C. Low-cost and easily fabricated ultrasound-guided breast phantom for breast biopsy training. Res Sci. 2020:1-22. https://doi.org/10.21203/rs.2.19957/v1
Werner R, Krueger S, Winkel A, et al. MR-guided breast biopsy using an active marker: a phantom study. J Magn Reson Imaging. 2006;24(1):235-241. https://doi.org/10.1002/jmri.20600
Schneider E, Rohling KW, Schnall MD, Giaquinto RO, Morris EA, Ballon D. An apparatus for MR-guided breast lesion localization and core biopsy: design and preliminary results. J Magn Reson Imaging. 2001;14(3):243-253. https://doi.org/10.1002/jmri.1180
Pfleiderer SOR, Marx C, Vagner J, Franke R-P, Reichenbach JR, Kaiser WA. Magnetic resonance-guided large-core breast biopsy inside a 1.5-T magnetic resonance scanner using an automatic system: in vitro experiments and preliminary clinical experience in four patients. Invest Radiol. 2005;40(7):458-463. https://doi.org/10.1097/01.rli.0000167423.27180.54
Tang AM, Kacher DF, Lam EY, Wong KK, Jolesz FA, Yang ES. Simultaneous ultrasound and MRI system for breast biopsy: compatibility assessment and demonstration in a dual modality phantom. IEEE Trans Med Imaging. 2008;27(2):247-254. https://doi.org/10.1109/TMI.2007.911000
Liu W, Yang Z, Feng D, Zhang D. Design and implementation of a new cable-driven robot for MRI-guided breast biopsy. Int J Med Robot Comput Assist Surg. 2020;16(2):e2063. https://doi.org/10.1002/rcs.2063
Surry KJM, Smith WL, Campbell LJ, Mills GR, Downey DB, Fenster A. The development and evaluation of a three-dimensional ultrasound-guided breast biopsy apparatus. Med Image Anal. 2002;6(3):301-312. https://doi.org/10.1016/s1361-8415(02)00087-7
Schmidt G, Gerlinger C, Endrikat J, et al. Teaching breast ultrasound skills including core-needle biopsies on a phantom enhances undergraduate student’s knowledge and learning satisfaction. Arch Gynecol Obstet. 2021;304(1):197-202. https://doi.org/10.1007/s00404-021-06016-8
Ng SY, Lin C-L. A multilayered, lesion-embedded ultrasound breast phantom with realistic visual and haptic feedback for needle biopsy. Ultrasound Med Biol. 2022;48(8):1468-1483. https://doi.org/10.1016/j.ultrasmedbio.2022.03.009
Antoniou A, Damianou C. MR relaxation properties of tissue-mimicking phantoms. Ultrasonics. 2022;119:106600. https://doi.org/10.1016/j.ultras.2021.106600
Menikou G, Yiannakou M, Yiallouras C, Ioannides C, Damianou C. MRI-compatible bone phantom for evaluating ultrasonic thermal exposures. Ultrasonics. 2016;71:12-19. https://doi.org/10.1016/j.ultras.2016.05.020
Menikou G, Yiannakou M, Yiallouras C, Ioannides C, Damianou C. MRI-compatible breast/rib phantom for evaluating ultrasonic thermal exposures. Int J Med Robot Comput Assist Surg. 2018;14(1):1-12. https://doi.org/10.1002/rcs.1849
Drakos T, Giannakou M, Menikou G, Ioannides C, Damianou C. An improved method to estimate ultrasonic absorption in agar-based gel phantom using thermocouples and MR thermometry. Ultrasonics. 2020;103:106089. https://doi.org/10.1016/j.ultras.2020.106089
Drakos T, Antoniou A, Evripidou N, et al. Ultrasonic attenuation of an agar, silicon dioxide, and evaporated milk gel phantom. J Med Ultrasound. 2021;29(4):239-249. https://doi.org/10.4103/JMU.JMU
Drakos T, Giannakou M, Menikou G, Constantinides G, Damianou C. Characterization of a soft tissue-mimicking agar/wood powder material for MRgFUS applications. Ultrasonics. 2021;113:10635. https://doi.org/10.1016/j.ultras.2021.106357
Menikou G, Damianou C. Acoustic and thermal characterization of agar based phantoms used for evaluating focused ultrasound exposures. J Ther Ultrasound. 2017;5(1):14. https://doi.org/10.1186/s40349-017-0093-z
Antoniou A, Georgiou L, Christodoulou T, et al. MR relaxation times of agar-based tissue-mimicking phantoms. J Appl Clin Med Phys. 2022;23(5):213533. https://doi.org/10.1002/acm2.13533
Woods TO. Standards for medical devices in MRI: present and future. J Magn Reson Imaging. 2007;26(5):1186-1189. https://doi.org/10.1002/jmri.21140
Daniel BL, Freeman LJ, Pyzoha JM, et al. An MRI-compatible semiautomated VacuumAssisted breast biopsy system: initial feasibility study. J Magn Reson Imaging. 2005;644(5):637-644. https://doi.org/10.1002/jmri.20302
Daniel BL, Birdwell RL, Black JW, Ikeda DM, Glover GH, Herfkens RJ. Interactive MR-guided, 14-gauge core-needle biopsy of enhancing lesions in a breast phantom model. Acad Radiol. 1997;4(7):508-512. https://doi.org/10.1016/S1076-6332(97)80238-3
Drakos T, Giannakou M, Menikou G, Damianou C. Magnetic resonance imaging-guided focused ultrasound positioning system for preclinical studies in small animals. J Ultrasound Med. 2020;40(7):1-10. https://doi.org/10.1002/jum.15514
Antoniou A, Georgiou L, Evripidou N, Ioannides C, Damianou C. Challenges regarding MR compatibility of an MRgFUS robotic system. J Magn Reson. 2022;344:107317. https://doi.org/10.1016/j.jmr.2022.107317
Cancer.Net. Breast cancer - stages. Accessed April 15, 2023. https://www.cancer.net/cancer-types/breast-cancer/stages
Epaminonda E, Drakos T, Kalogirou C, Theodoulou M, Yiallouras C, Damianou C. MRI guided focused ultrasound robotic system for the treatment of gynaecological tumors. Int J Med Robot Comput Assist Surg. 2016;12(1):46-52. https://doi.org/10.1002/rcs.1653
Menikou G, Yiallouras C, Yiannakou M, Damianou C. MRI-guided focused ultrasound robotic system for the treatment of bone cancer. Int J Med Robot Comput Assist Surg. 2017;13(1):1-11. https://doi.org/10.1002/rcs.1753
Hargreaves B, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal induced artifacts in MRI. Am J Roentgenol. 2011;197(3):547-555. https://doi.org/10.2214/AJR
Mann RM, Kuhl CK, Moy L. Contrast-enhanced MRI for breast cancer screening. J Magn Reson Imaging. 2019;50(2):377-390. https://doi.org/10.1002/jmri.26654