Peripheral and central neuroplasticity in a mouse model of endometriosis.
central neuroinflammation and sensitization
chronic pelvic pain
endometriosis
hypersensitivity
peripheral and central neuroplasticity
vagina-innervating afferents
Journal
Journal of neurochemistry
ISSN: 1471-4159
Titre abrégé: J Neurochem
Pays: England
ID NLM: 2985190R
Informations de publication
Date de publication:
11 May 2023
11 May 2023
Historique:
revised:
24
04
2023
received:
09
03
2023
accepted:
26
04
2023
pubmed:
11
5
2023
medline:
11
5
2023
entrez:
11
5
2023
Statut:
aheadofprint
Résumé
Chronic pelvic pain (CPP) is the most debilitating symptom of gynaecological disorders such as endometriosis. However, it remains unclear how sensory neurons from pelvic organs affected by endometriosis, such as the female reproductive tract, detect and transmit nociceptive events and how these signals are processed within the central nervous system (CNS). Using a previously characterized mouse model of endometriosis, we investigated whether the increased pain sensitivity occurring in endometriosis could be attributed to (i) changes in mechanosensory properties of sensory afferents innervating the reproductive tract, (ii) alterations in sensory input from reproductive organs to the spinal cord or (iii) neuroinflammation and sensitization of spinal neural circuits. Mechanosensitivity of vagina-innervating primary afferents was examined using an ex vivo single-unit extracellular recording preparation. Nociceptive signalling from the vagina to the spinal cord was quantified by phosphorylated MAP kinase ERK1/2 immunoreactivity. Immunohistochemistry was used to determine glial and neuronal circuit alterations within the spinal cord. We found that sensory afferents innervating the rostral, but not caudal portions of the mouse vagina, developed mechanical hypersensitivity in endometriosis. Nociceptive signalling from the vagina to the spinal cord was significantly enhanced in mice with endometriosis. Moreover, mice with endometriosis developed microgliosis, astrogliosis and enhanced substance P neurokinin-1 receptor immunoreactivity within the spinal cord, suggesting the development of neuroinflammation and sensitization of spinal circuitry in endometriosis. These results demonstrate endometriosis-induced neuroplasticity occurring at both peripheral and central sites of sensory afferent pathways. These findings may help to explain the altered sensitivity to pain in endometriosis and provide a novel platform for targeted pain relief treatments for this debilitating disorder.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Australian Research Council
ID : ARC Discovery Project (DP220101269)
Organisme : Australian Research Council
ID : Discovery Early Career Research Award (DE130100223
Organisme : Australian Research Council
ID : Discovery Project (DP180101395)
Organisme : Hospital Research Foundation
ID : PhD Scholarship (SAPhD000242018)
Organisme : National Health and Medical Research Council
ID : Development Grant (APP2014250)
Organisme : National Health and Medical Research Council
ID : Ideas Grant # APP1181448
Organisme : National Health and Medical Research Council
ID : Investigator Leadership Grant (APP2008727)
Informations de copyright
© 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
Références
Abbott, J., Hawe, J., Hunter, D., Holmes, M., Finn, P., & Garry, R. (2004). Laparoscopic excision of endometriosis: A randomized, placebo-controlled trial. Fertility and Sterility, 82, 878-884.
Adaes, S., Almeida, L., Potes, C. S., Ferreira, A. R., Castro-Lopes, J. M., Ferreira-Gomes, J., & Neto, F. L. (2017). Glial activation in the collagenase model of nociception associated with osteoarthritis. Molecular Pain, 13, 1744806916688219.
Arnold, J., Barcena De Arellano, M. L., Ruster, C., Vercellino, G. F., Chiantera, V., Schneider, A., & Mechsner, S. (2012). Imbalance between sympathetic and sensory innervation in peritoneal endometriosis. Brain, Behavior, and Immunity, 26, 132-141.
Asante, A., & Taylor, R. N. (2011). Endometriosis: The role of neuroangiogenesis. Annual Review of Physiology, 73, 163-182.
As-Sanie, S., Harris, R. E., Harte, S. E., Tu, F. F., Neshewat, G., & Clauw, D. J. (2013). Increased pressure pain sensitivity in women with chronic pelvic pain. Obstetrics and Gynecology, 122, 1047-1055.
As-Sanie, S., Harris, R. E., Napadow, V., Kim, J., Neshewat, G., Kairys, A., Williams, D., Clauw, D. J., & Schmidt-Wilcke, T. (2012). Changes in regional gray matter volume in women with chronic pelvic pain: A voxel-based morphometry study. Pain, 153, 1006-1014.
Bellono, N. W., Bayrer, J. R., Leitch, D. B., Castro, J., Zhang, C., O'donnell, T. A., Brierley, S. M., Ingraham, H. A., & Julius, D. (2017). Enterochromaffin cells are gut Chemosensors that couple to sensory neural pathways. Cell, 170(185-198), e16.
Berkley, K. J. (2005). A life of pelvic pain. Physiology & Behavior, 86, 272-280.
Berkley, K. J., Cason, A., Jacobs, H., Bradshaw, H., & Wood, E. (2001). Vaginal hyperalgesia in a rat model of endometriosis. Neuroscience Letters, 306, 185-188.
Berkley, K. J., Hotta, H., Robbins, A., & Sato, Y. (1990). Functional properties of afferent fibers supplying reproductive and other pelvic organs in pelvic nerve of female rat. Journal of Neurophysiology, 63, 256-272.
Berkley, K. J., Hubscher, C. H., & Wall, P. D. (1993). Neuronal responses to stimulation of the cervix, uterus, colon, and skin in the rat spinal cord. Journal of Neurophysiology, 69, 545-556.
Berkley, K. J., Mcallister, S. L., Accius, B. E., & Winnard, K. P. (2007). Endometriosis-induced vaginal hyperalgesia in the rat: Effect of estropause, ovariectomy, and estradiol replacement. Pain, 132(Suppl 1), S150-S159.
Berkley, K. J., Rapkin, A. J., & Papka, R. E. (2005). The pains of endometriosis. Science, 308, 1587-1589.
Berkley, K. J., Robbins, A., & Sato, Y. (1993). Functional differences between afferent fibers in the hypogastric and pelvic nerves innervating female reproductive organs in the rat. Journal of Neurophysiology, 69, 533-544.
Bradesi, S., Svensson, C. I., Steinauer, J., Pothoulakis, C., Yaksh, T. L., & Mayer, E. A. (2009). Role of spinal microglia in visceral hyperalgesia and NK1R up-regulation in a rat model of chronic stress. Gastroenterology, 136(1339-48), e1-e2.
Brawn, J., Morotti, M., Zondervan, K. T., Becker, C. M., & Vincent, K. (2014). Central changes associated with chronic pelvic pain and endometriosis. Human Reproduction Update, 20, 737-747.
Brierley, S. M., Castro, J., Harrington, A. M., Hughes, P. A., Page, A. J., Rychkov, G. Y., & Blackshaw, L. A. (2011). TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. The Journal of Physiology, 589, 3575-3593.
Brierley, S. M., & Linden, D. R. (2014). Neuroplasticity and dysfunction after gastrointestinal inflammation. Nature Reviews. Gastroenterology & Hepatology, 11, 611-627.
Burns, K. A., Rodriguez, K. F., Hewitt, S. C., Janardhan, K. S., Young, S. L., & Korach, K. S. (2012). Role of estrogen receptor signaling required for endometriosis-like lesion establishment in a mouse model. Endocrinology, 153, 3960-3971.
Castro, J., Garcia-Caraballo, S., Maddern, J., Schober, G., Lumsden, A., Harrington, A., Schmiel, S., Lindstrom, B., Adams, J., & Brierley, S. M. (2022). Olorinab (APD371), a peripherally acting, highly selective, full agonist of the cannabinoid receptor 2, reduces colitis-induced acute and chronic visceral hypersensitivity in rodents. Pain, 163, e72-e86.
Castro, J., Grundy, L., Deiteren, A., Harrington, A. M., O'donnell, T., Maddern, J., Moore, J., Garcia-Caraballo, S., Rychkov, G. Y., Yu, R., Kaas, Q., Craik, D. J., Adams, D. J., & Brierley, S. M. (2018). Cyclic analogues of alpha-conotoxin Vc1.1 inhibit colonic nociceptors and provide analgesia in a mouse model of chronic abdominal pain. British Journal of Pharmacology, 175, 2384-2398.
Castro, J., Harrington, A. M., Garcia-Caraballo, S., Maddern, J., Grundy, L., Zhang, J., Page, G., Miller, P. E., Craik, D. J., Adams, D. J., & Brierley, S. M. (2017). Alpha-conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABAB receptors. Gut, 66, 1083-1094.
Castro, J., Harrington, A. M., Hughes, P. A., Martin, C. M., Ge, P., Shea, C. M., Jin, H., Jacobson, S., Hannig, G., Mann, E., Cohen, M. B., Macdougall, J. E., Lavins, B. J., Kurtz, C. B., Silos-Santiago, I., Johnston, J. M., Currie, M. G., Blackshaw, L. A., & Brierley, S. M. (2013). Linaclotide inhibits colonic nociceptors and relieves abdominal pain via guanylate cyclase-C and extracellular cyclic guanosine 3′,5′-monophosphate. Gastroenterology, 145(1334-46), e1-e11.
Castro, J., Harrington, A. M., Lieu, T., Garcia-Caraballo, S., Maddern, J., Schober, G., O'donnell, T., Grundy, L., Lumsden, A. L., Miller, P., Ghetti, A., Steinhoff, M. S., Poole, D. P., Dong, X., Chang, L., Bunnett, N. W., & Brierley, S. M. (2019). Activation of pruritogenic TGR5, MrgprA3, and MrgprC11 on colon-innervating afferents induces visceral hypersensitivity. JCI Insight, 4, e131712.
Castro, J., Maddern, J., Erickson, A., Caldwell, A., Grundy, L., Harrington, A. M., & Brierley, S. M. (2020). Pharmacological modulation of voltage-gated sodium (NaV) channels alters nociception arising from the female reproductive tract. Pain, 162, 227-242.
Castro, J., Maddern, J., Grundy, L., Manavis, J., Harrington, A. M., Schober, G., & Brierley, S. M. (2021). A mouse model of endometriosis that displays vaginal, colon, cutaneous, and bladder sensory comorbidities. The FASEB Journal, 35, e21430.
Ceccaroni, M., Clarizia, R., Roviglione, G., Bruni, F., Ruffo, G., Peters, I., De Placido, G., & Minelli, L. (2010). Deep rectal and parametrial infiltrating endometriosis with monolateral pudendal nerve involvement: Case report and laparoscopic nerve-sparing approach. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 153, 227-229.
Chen, H., Vannuccini, S., Capezzuoli, T., Ceccaroni, M., Mubiao, L., Shuting, H., Wu, Y., Huang, H., & Petraglia, F. (2021). Comorbidities and quality of life in women undergoing first surgery for endometriosis: Differences between Chinese and Italian population. Reproductive Sciences, 28, 2359-2366.
Clark, A. K., Old, E. A., & Malcangio, M. (2013). Neuropathic pain and cytokines: Current perspectives. Journal of Pain Research, 6, 803-814.
Dang, K., Lamb, K., Cohen, M., Bielefeldt, K., & Gebhart, G. F. (2008). Cyclophosphamide-induced bladder inflammation sensitizes and enhances P2X receptor function in rat bladder sensory neurons. Journal of Neurophysiology, 99, 49-59.
Deberry, J. J., Schwartz, E. S., & Davis, B. M. (2014). TRPA1 mediates bladder hyperalgesia in a mouse model of cystitis. Pain, 155, 1280-1287.
Decter, D., Arbib, N., Markovitz, H., Seidman, D. S., & Eisenberg, V. H. (2021). Sonographic signs of adenomyosis in women with endometriosis are associated with infertility. Journal of Clinical Medicine, 10, 2355.
Deleo, J. A., & Yezierski, R. P. (2001). The role of neuroinflammation and neuroimmune activation in persistent pain. Pain, 90, 1-6.
Dodds, K. N., Beckett, E. A., Evans, S. F., Grace, P. M., Watkins, L. R., & Hutchinson, M. R. (2016). Glial contributions to visceral pain: Implications for disease etiology and the female predominance of persistent pain. Translational Psychiatry, 6, e888.
Dodds, K. N., Beckett, E. A. H., Evans, S. F., & Hutchinson, M. R. (2019). Spinal glial adaptations occur in a minimally invasive mouse model of endometriosis: Potential implications for lesion etiology and persistent pelvic pain. Reproductive Sciences, 26, 357-369.
Echeverry, S., Shi, X. Q., & Zhang, J. (2008). Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Pain, 135, 37-47.
Eng, L. F., & Ghirnikar, R. S. (1994). GFAP and astrogliosis. Brain Pathology, 4, 229-237.
Gautam, M., Prasoon, P., Kumar, R., Reeta, K. H., Kaler, S., & Ray, S. B. (2016). Role of neurokinin type 1 receptor in nociception at the periphery and the spinal level in the rat. Spinal Cord, 54, 172-182.
Greaves, E., Horne, A. W., Jerina, H., Mikolajczak, M., Hilferty, L., Mitchell, R., Fleetwood-Walker, S. M., & Saunders, P. T. (2017). EP2 receptor antagonism reduces peripheral and central hyperalgesia in a preclinical mouse model of endometriosis. Scientific Reports, 7, 44169.
Grundstrom, H., Gerdle, B., Alehagen, S., Bertero, C., Arendt-Nielsen, L., & Kjolhede, P. (2019). Reduced pain thresholds and signs of sensitization in women with persistent pelvic pain and suspected endometriosis. Acta Obstetricia et Gynecologica Scandinavica, 98, 327-336.
Grundy, L., Erickson, A., & Brierley, S. M. (2019). Visceral Pain. Annual Review of Physiology, 81, 261-284.
Grundy, L., Erickson, A., Caldwell, A., Garcia-Caraballo, S., Rychkov, G., Harrington, A., & Brierley, S. M. (2018). Tetrodotoxin-sensitive voltage-gated sodium channels regulate bladder afferent responses to distension. Pain, 159, 2573-2584.
Grundy, L., Harrington, A. M., Castro, J., Garcia-Caraballo, S., Deiteren, A., Maddern, J., Rychkov, G. Y., Ge, P., Peters, S., Feil, R., Miller, P., Ghetti, A., Hannig, G., Kurtz, C. B., Silos-Santiago, I., & Brierley, S. M. (2018). Chronic linaclotide treatment reduces colitis-induced neuroplasticity and reverses persistent bladder dysfunction. JCI Insight, 3, e121841.
Hanisch, U. K., & Kettenmann, H. (2007). Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience, 10, 1387-1394.
Harrington, A. M., Brierley, S. M., Isaacs, N., Hughes, P. A., Castro, J., & Blackshaw, L. A. (2012). Sprouting of colonic afferent central terminals and increased spinal mitogen-activated protein kinase expression in a mouse model of chronic visceral hypersensitivity. The Journal of Comparative Neurology, 520, 2241-2255.
Harrington, A. M., Caraballo, S. G., Maddern, J. E., Grundy, L., Castro, J., & Brierley, S. M. (2019). Colonic afferent input and dorsal horn neuron activation differs between the thoracolumbar and lumbosacral spinal cord. American Journal of Physiology. Gastrointestinal and Liver Physiology, 317, G285-g303.
Honore, P., Rogers, S. D., Schwei, M. J., Salak-Johnson, J. L., Luger, N. M., Sabino, M. C., Clohisy, D. R., & Mantyh, P. W. (2000). Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience, 98, 585-598.
Hopperton, K. E., Mohammad, D., Trepanier, M. O., Giuliano, V., & Bazinet, R. P. (2018). Markers of microglia in post-mortem brain samples from patients with Alzheimer's disease: A systematic review. Molecular Psychiatry, 23, 177-198.
Ikeda, H., Heinke, B., Ruscheweyh, R., & Sandkuhler, J. (2003). Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science, 299, 1237-1240.
Imai, Y., Ibata, I., Ito, D., Ohsawa, K., & Kohsaka, S. (1996). A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochemical and Biophysical Research Communications, 224, 855-862.
Inserra, M. C., Israel, M. R., Caldwell, A., Castro, J., Deuis, J. R., Harrington, A. M., Keramidas, A., Garcia-Caraballo, S., Maddern, J., Erickson, A., Grundy, L., Rychkov, G. Y., Zimmermann, K., Lewis, R. J., Brierley, S. M., & Vetter, I. (2017). Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1. Scientific Reports, 7, 42810.
Ito, D., Imai, Y., Ohsawa, K., Nakajima, K., Fukuuchi, Y., & Kohsaka, S. (1998). Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Research. Molecular Brain Research, 57, 1-9.
Jiang, Y., Castro, J., Blomster, L. V., Agwa, A. J., Maddern, J., Schober, G., Herzig, V., Chow, C. Y., Cardoso, F. C., De Souza, D., Franca, P., Gonzales, J., Schroeder, C. I., Esche, S., Reiner, T., Brierley, S. M., & King, G. F. (2021). Pharmacological inhibition of the voltage-gated Sodium Channel NaV1.7 alleviates chronic visceral pain in a rodent model of irritable bowel syndrome. ACS Pharmacology & Translational Science, 4, 1362-1378.
Kettenmann, H., Hanisch, U. K., Noda, M., & Verkhratsky, A. (2011). Physiology of microglia. Physiological Reviews, 91, 461-553.
Koninckx, P. R., Ussia, A., Adamyan, L., Wattiez, A., Gomel, V., & Martin, D. C. (2019). Pathogenesis of endometriosis: The genetic/epigenetic theory. Fertility and Sterility, 111, 327-340.
Latremoliere, A., & Woolf, C. J. (2009). Central sensitization: A generator of pain hypersensitivity by central neural plasticity. The Journal of Pain, 10, 895-926.
Laux-Biehlmann, A., D'hooghe, T., & Zollner, T. M. (2015). Menstruation pulls the trigger for inflammation and pain in endometriosis. Trends in Pharmacological Sciences, 36, 270-276.
Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A. F., Boguski, M. S., Brockway, K. S., Byrnes, E. J., Chen, L., Chen, L., Chen, T. M., Chin, M. C., Chong, J., Crook, B. E., Czaplinska, A., Dang, C. N., Datta, S., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature, 445, 168-176.
Leon-Rodriguez, A., Fernandez-Arjona, M. D. M., Grondona, J. M., Pedraza, C., & Lopez-Avalos, M. D. (2022). Anxiety-like behavior and microglial activation in the amygdala after acute neuroinflammation induced by microbial neuraminidase. Scientific Reports, 12, 11581.
Li, T., Mamillapalli, R., Ding, S., Chang, H., Liu, Z. W., Gao, X. B., & Taylor, H. S. (2018). Endometriosis alters brain electrophysiology, gene expression and increases pain sensitization, anxiety, and depression in female mice. Biology of Reproduction, 99, 349-359.
Liu, X. G., & Sandkuhler, J. (1998). Activation of spinal N-methyl-D-aspartate or neurokinin receptors induces long-term potentiation of spinal C-fibre-evoked potentials. Neuroscience, 86, 1209-1216.
Liu, Z., Chen, S., Qiu, C., Sun, Y., Li, W., Jiang, J., & Zhang, J. M. (2018). Fractalkine/CX3CR1 contributes to endometriosis-induced neuropathic pain and mechanical hypersensitivity in rats. Frontiers in Cellular Neuroscience, 12, 495.
Maddern, J., Grundy, L., Castro, J., & Brierley, S. M. (2020). Pain in endometriosis. Front Cellular Neuroscience, 14, 590823.
Maddern, J., Grundy, L., Harrington, A., Schober, G., Castro, J., & Brierley, S. M. (2021). A syngeneic inoculation mouse model of endometriosis that develops multiple comorbid visceral and cutaneous pain like behaviours. Pain, 163, 1622-1635.
Maillard, C., Cherif Alami, Z., Squifflet, J. L., Luyckx, M., Jadoul, P., Thomas, V., & Wyns, C. (2021). Diagnosis and treatment of Vulvo-perineal endometriosis: A systematic review. Front Surgery, 8, 637180.
Malykhina, A. P., Qin, C., Greenwood-Van Meerveld, B., Foreman, R. D., Lupu, F., & Akbarali, H. I. (2006). Hyperexcitability of convergent colon and bladder dorsal root ganglion neurons after colonic inflammation: Mechanism for pelvic organ cross-talk. Neurogastroenterology and Motility, 18, 936-948.
Mckinnon, B. D., Bertschi, D., Bersinger, N. A., & Mueller, M. D. (2015). Inflammation and nerve fiber interaction in endometriotic pain. Trends in Endocrinology and Metabolism, 26, 1-10.
Monica Brauer, M., & Smith, P. G. (2015). Estrogen and female reproductive tract innervation: Cellular and molecular mechanisms of autonomic neuroplasticity. Autonomic Neuroscience, 187, 1-17.
Morotti, M., Vincent, K., Brawn, J., Zondervan, K. T., & Becker, C. M. (2014). Peripheral changes in endometriosis-associated pain. Human Reproduction Update, 20, 717-736.
Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308, 1314-1318.
Old, E. A., & Malcangio, M. (2012). Chemokine mediated neuron-glia communication and aberrant signalling in neuropathic pain states. Current Opinion in Pharmacology, 12, 67-73.
Osteen, J. D., Herzig, V., Gilchrist, J., Emrick, J. J., Zhang, C., Wang, X., Castro, J., Garcia-Caraballo, S., Grundy, L., Rychkov, G. Y., Weyer, A. D., Dekan, Z., Undheim, E. A., Alewood, P., Stucky, C. L., Brierley, S. M., Basbaum, A. I., Bosmans, F., King, G. F., & Julius, D. (2016). Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature, 534, 494-499.
Palecek, J., Paleckova, V., & Willis, W. D. (2003). Postsynaptic dorsal column neurons express NK1 receptors following colon inflammation. Neuroscience, 116, 565-572.
Palotai, M., Mike, A., Cavallari, M., Strammer, E., Orsi, G., Healy, B. C., Schregel, K., Illes, Z., & Guttmann, C. R. (2018). Changes to the septo-fornical area might play a role in the pathogenesis of anxiety in multiple sclerosis. Multiple Sclerosis, 24, 1105-1114.
Peng, J., Gu, N., Zhou, L., Eyo, U. B., Murugan, M., Gan, W. B., & Wu, L. J. (2016). Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nature Communications, 7, 12029.
Polgár, E., Al Ghamdi, K. S., & Todd, A. J. (2010). Two populations of neurokinin 1 receptor-expressing projection neurons in lamina I of the rat spinal cord that differ in AMPA receptor subunit composition and density of excitatory synaptic input. Neuroscience, 167, 1192-1204.
Raghavendra, V., Tanga, F. Y., & Deleo, J. A. (2004). Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. The European Journal of Neuroscience, 20, 467-473.
Robbins, A., Sato, Y., Hotta, H., & Berkley, K. J. (1990). Responses of hypogastric nerve afferent fibers to uterine distension in estrous or metestrous rats. Neuroscience Letters, 110, 82-85.
Saijo, K., & Glass, C. K. (2011). Microglial cell origin and phenotypes in health and disease. Nature Reviews. Immunology, 11, 775-787.
Scholz, J., & Woolf, C. J. (2007). The neuropathic pain triad: Neurons, immune cells and glia. Nature Neuroscience, 10, 1361-1368.
Sofroniew, M. V. (2014). Astrogliosis. Cold Spring Harbor Perspectives in Biology, 7, a020420.
Soliman, A. M., Yang, H., Du, E. X., Kelley, C., & Winkel, C. (2016). The direct and indirect costs associated with endometriosis: A systematic literature review. Human Reproduction, 31, 712-722.
Somigliana, E., Viganò, P., Rossi, G., Carinelli, S., Vignali, M., & Panina-Bordignon, P. (1999). Endometrial ability to implant in ectopic sites can be prevented by interleukin-12 in a murine model of endometriosis. Human Reproduction, 14, 2944-2950.
Surrey, E. S., Soliman, A. M., Johnson, S. J., Davis, M., Castelli-Haley, J., & Snabes, M. C. (2018). Risk of developing comorbidities among women with endometriosis: A retrospective matched cohort study. Journal of Women's Health (2002), 27, 1114-1123.
Sutton, C. J., Ewen, S. P., Whitelaw, N., & Haines, P. (1994). Prospective, randomized, double-blind, controlled trial of laser laparoscopy in the treatment of pelvic pain associated with minimal, mild, and moderate endometriosis. Fertility and Sterility, 62, 696-700.
Taves, S., Berta, T., Chen, G., & Ji, R. R. (2013). Microglia and spinal cord synaptic plasticity in persistent pain. Neural Plasticity, 2013, 753656.
Tsuda, M. (2016). Microglia in the spinal cord and neuropathic pain. Journal of Diabetes Investigation, 7, 17-26.
Vega-Avelaira, D., Geranton, S. M., & Fitzgerald, M. (2009). Differential regulation of immune responses and macrophage/neuron interactions in the dorsal root ganglion in young and adult rats following nerve injury. Molecular Pain, 5, 70.
Watkins, L. R., Milligan, E. D., & Maier, S. F. (2001). Glial activation: A driving force for pathological pain. Trends in Neurosciences, 24, 450-455.
Zhou, Y. L., Zhou, S. Z., Li, H. L., Hu, M. L., Li, H., Guo, Q. H., Deng, X. M., Zhang, Y. Q., & Xu, H. (2018). Bidirectional modulation between infiltrating CD3(+) T-lymphocytes and astrocytes in the spinal cord drives the development of allodynia in monoarthritic rats. Scientific Reports, 8, 51.
Zito, G., Luppi, S., Giolo, E., Martinelli, M., Venturin, I., Di Lorenzo, G., & Ricci, G. (2014). Medical treatments for endometriosis-associated pelvic pain. BioMed Research International, 2014, 191967.